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Abstract

We propose a tractable framework to introduce externalities in a screening model.
Agents differ in both payoff-type and influence-type (ranking how beneficial their
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of the unobserved payoff-type.
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1 Introduction

In many settings ranging from production with a polluting factor to the consumption of

a network good, individual activities affect the payoff of others and their willingness to

act. A planner or monopolist designing policy in such an environment is often affected

by adverse selection as well: A monopolist may price discriminate to exploit unobserved

heterogeneity in consumers’ valuations while providing large quantities to influential

consumers in order to increase the willingness to pay in the population. Likewise,

a regulator that controls pollution through production quotas or taxes may need to

discriminate among heterogeneously productive firms. Given the attention received by

the study of externalities and screening separately and the abundance of applications

that are affected by both forces, it is perhaps surprising that their interaction has only

received limited attention in the literature.1 A possible explanation is that the most

natural framework for conducting this analysis is a screening model with at least two

dimensions of heterogeneity: agents differ both in their taste for the activity and in their

impact on others. Multidimensional screening problems, however, present notorious

difficulties and often require a case-by-case analysis of the particulars of the setting.2

In this paper, we propose a tractable framework for analyzing the interplay of screening

and externalities. The principal faces a population of agents whose payoffs are interdepen-

dent through a global externality. Agents can be characterized by a two-dimensional type,

one parametrizing the returns from the activity as in a standard screening model (payoff-

type), the other parametrizing the impact of his activity on the externality (influence-type).

There is no aggregate uncertainty, the principal knows the distribution of types and costs

or benefits from the externality in aggregate, but is ignorant of each individual agent’s

type. The crucial assumption is that even though both dimensions of the agents’ types

enter the principal’s objective, only the payoff-type affects their utility. Apart from single-

crossing, we are permissive on the functional form of the utility and externality function

as well as on the correlation between payoff- and influence-type.3 We provide bounds

ensuring the existence of a solution, derive its properties in the general case, and illustrate

our results in specific settings.

In some applications, it may be possible to observe one or both of the dimensions,

say because influence is mediated by views on a platform or the payoff-type relates

1Such situations are of course analyzed in terms of mechanism design, although this literature typically
focuses on situations with aggregate uncertainty about the value of the externality and finding the
(constrained) efficient allocation.

2Rochet and Stole (2003) survey the literature on multidimensional screening, highlighting tractable
cases and the source of the general difficulty of such problems, namely the lack of fixed order on types along
which sorting constraints bind. This also justifies the moniker of multidimensional screening for our discrete
setting.

3This flexibility in the correlation structure effectively weakens the assumption that the influence-type
does not enter the utility, as it allows us to reinterpret as influence all heterogeneity that enters the principal’s
objective without affecting the agent’s utility. The substantive assumption is the single-dimensionality
(single-crossing) of the appropriately redefined payoff-type and residual. We conduct such a transformation
in the context of pollution in production in Section 2.2.1.
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to the employed technology that is easily verified. We study how the observability of

each of the dimensions affects the allocation of the activity and rents as well as the

aggregate externality. Clearly, if both characteristics are observed by the principal, she can

implement the efficient contract and extract all surplus. This result holds as long as the

payoff-type is observed: As the influence-type does not affect an agent’s utility, the sorting

constraints only require that utility is flat along this dimension; the first best (through

full surplus extraction) satisfies this feasibility condition, and hence is optimal.

The main contribution of this paper is the characterization of the optimal contract

when both dimensions are unobserved (full screening contract). A crucial intermediate

step is to show that – despite the apparent multidimensionality – there is a fixed total

order of types determining the binding sorting constraints and that the optimal allocation

must be increasing along the lexicographic order where the payoff-type is the dominant

dimension (lexicographic monotonicity, Theorem 1). As in a standard screening problem,

incentive compatibility drives monotonicity in the payoff-type. Within a payoff-type

slice, the principal provides a higher allocation to more influential consumers in order

to move the externality in the socially desirable direction: With positive consumption

externalities, for example, influencers are made to consume more, while with pollution

externalities green firms are made to produce more. Such tilting to increase total surplus

is always profitable for the principal even though it also increases information rents. The

principal’s control of the externality, however, is constrained by asymmetric information

and lexicographic monotonicity emerges as a way to resolve the tension between screening

and externality provision.

From an applied perspective, Theorem 1 shows both the potential and the limitations

of screening for two characteristics using just a single instrument. Agents with the same

payoff-type who would be assigned to the same action in a standard setting instead choose

from a range of options. By giving them such flexibility, the principal allows agents to

sort along a dimension that does not enter into their utility directly, but impacts the

social value of individual actions through the externality. Nevertheless, lexicographic

monotonicity imposes tight restrictions: It is impossible, for example, to force high

consumption by influential agents that do not care about the activity (have low payoff-

types) unless virtually every consumer has equally high or even higher consumption;

likewise, productive firms that pollute a lot must produce (weakly) more than green but

unproductive firms.4 The effect of screening on the aggregate externality is ambiguous:

On the one hand, it induces the familiar downward distortion in allocations; on the other

hand, lexicographic monotonicity makes it more costly to reduce the allocation of low

influence agents when they are bunched with the preceding high-influence types. For the

case of pollution, we show that these effects can lead to perplexing comparative statics:

It is exactly when the principal cares a lot about pollution that the screening contract

4There is a large literature studying the targeting of interventions in a setting with externalities (see e.g.
Ballester et al., 2006; Banerjee et al., 2019; Galeotti et al., 2020). We demonstrate the limitations of targeting
when there is only coarse information about the network structure and this information has to be elicited.
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features a level of pollution that exceeds the first-best. For an intermediate degree of

concern, the two coincide; when the principal cares little about pollution, its second-best

level falls short of the first best.

From a theoretical perspective, Theorem 1 helps to clarify the role of private infor-

mation that is non-verifiable and not payoff-relevant for the agent in adverse selection

problems. Such information arises naturally in a setting with externalities (see also

Shi and Xing, 2020), and when agents have private information relevant only for the

payoffs of other agents (Jehiel and Moldovanu, 2001) or about the welfare weight the

principal desires to ascribe to them (Akbarpour r⃝ al., 2020). It is commonly argued

that such private information cannot be elicited and used by an incentive compatible

mechanism. We show that this impossibility result relies crucially on a continuum type

space assumption (Lemma 0).

Despite making the problem one-dimensional, lexicographic monotonicity does not

render its solution straightforward. Even under the usual regularity conditions, the virtual

value typically is non-monotonic in the lexicographic order for two reasons, both arising

around the switching types (types with the highest level of influence, who are adjacent to

an agent with higher payoff-type): First, only the allocation of these types directly causes

information rents and hence only their virtual value is downward distorted. Second, the

subsequent type in the lexicographic order has the lowest influence; this downward jump

is a source of non-monotonicity because the virtual value is increasing in influence. We

generalize standard techniques (Myerson, 1981; Toikka, 2011) to take into account that

the externality creates interdependence among individuals’ virtual values and provide

a two-step ironing procedure (Theorem 2) to characterize the allocations and aggregate

activity that solve the full screening problem. In contrast to efficiency at the boundary

results (e.g. Rochet and Choné, 1998), we show that bunching can occur even for agents

with the highest payoff-type, and that every bunching region contains agents of the

highest-influence type.

One feature shared by the efficient and full screening contract is that individuals’

influence is not rewarded: In the former case, full surplus extraction leaves everyone

without any rent, while in the latter case incentive compatibility prevents any rent from

emerging along a dimension (influence) that does not directly affect individuals’ utility.

This implication seems at odds with evidence of large rents enjoyed by influencers on social

media and with many results in the literature (Candogan et al., 2012; Bloch and Quérou,

2013; Fainmesser and Galeotti, 2020). To investigate when such rents can emerge in our

setting, we study the problem with observable influence (but unobserved payoff-type) in

our linear-quadratic application to the pricing of goods with consumption externalities.

In this case, a condition on primitives ensures that the optimal contract exhibits rents

for influential consumers:5 Even when influencers are atomistic and have no market

power, they can gain from their position but only if it is observable and only indirectly as the

5In particular, the condition puts an upper bound on the affiliation between the payoff- and influence-
type.
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observed level of influence is informative about the unobserved payoff-type.

The paper proceeds as follows. We conclude this introductory section by discussing the

related literature. Section 2 presents the general model and three applications, which will

also be used as running examples to illustrate our results. We solve for benchmark cases

in Section 3, where we characterize the efficient allocation, show that it is implementable

as long as the payoff-type is observed, and characterize the decentralized equilibrium

of the game if the technology is available to every agent. We then analyze the full

screening problem in Section 4. Section 5 analyses the problem when influence is observed

but payoff-types are private information, Section 6 concludes. We gather all proofs in

Appendix A and derivations for the examples in Appendix B.

1.1 Literature

Our work lies at the intersection of multidimensional screening and screening with

externalities. Within multidimensional screening (for a survey, see Rochet and Stole,

2003), we contribute in particular to the literature with a one-dimensional instrument

(Laffont et al., 1987; Rochet and Stole, 2002; Deneckere and Severinov, 2015), by studying

a setting in which the agents’ type can be reduced to a single dimension for analyzing

their choices but the residual private information affects the principal’s problem.6 Within

contracting and mechanism design with externalities the classic literature (Segal, 1999,

2003; Jehiel et al., 1999; Winter, 2004) focuses on the externality of contracting with

finitely many agents and on the interplay between contracting and the strategic interaction

among agents. We focus on public contracting with a population of atomistic agents and

select the principal-preferred equilibrium as is typical in the adverse selection literature.

There is a growing literature on monopolistic screening with externalities. Sundarara-

jan (2004) and Csorba (2008) study screening with externalities in consumption when

consumers differ only in their valuation of the good. We analyze both dimensions of private

information – payoff-type and influence – at the same time and study their interaction

in screening. Weber (2006) characterizes the implementable allocations in a general

multidimensional model with externalities and provides a set of necessary conditions for

the optimal control problem characterizing the optimal screening contract. We focus on

a setting where despite its underlying multidimensionality the problem can be reduced

to a single-dimensional screening problem and we use this tractability to provide a tight

characterization of the solution and its properties.

In a recent line of work, Dworczak r⃝ al. (2021) and Akbarpour r⃝ al. (2020) study such

screening problems when agents may have private information about their welfare-weight,

a characteristic that – akin to influence in our setting – affects the principal’s problem

but not the choices of agents. Akbarpour r⃝ al. (2022) study a setting with potential

private information about externalities which enter social welfare but not the allocation

6This contrasts with studies of bundling and screening with a multidimensional outcome, see McAfee
et al. (1989) for a classic contribution in a unit-demand setting and Carroll (2017) and Haghpanah and
Hartline (2021) for recent studies.
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choices of the agents. In a contemporaneous paper, Shi and Xing (2020) study screening

for payoff-type and influence-type with a linear-quadratic demand specification (see also

Section 2.2.2). These papers study a continuum setting, which implies that their allocation

is constant along the influence-dimension (or welfare weight, externality, etc., resp. see

Lemma 0 below), while our assumption of discrete types allows us to investigate how the

allocation and rents depend on influence.

We discuss the literature related specifically to our applications in the respective

subsections.

2 Model and Applications

We construct a parsimonious model of screening with externalities and two dimensions

of (potentially unobserved) heterogeneity: an influence-type and a payoff-type. Agents

choose actions which have aggregate effects. The influence-type determines the impact of

individual action in the creation of this externality, while the payoff-type parametrizes

the surplus from the individual action and the aggregate effect.

2.1 Setup and Primitives

There is a unit mass of agents characterized by a type θ ∈ Θ distributed according to a

full support distribution F. Each agent takes an action x ∈R+ whose payoff is subject to

an aggregate externality: the attractiveness of the action is dependent on an aggregate

variable, x. For a given x, an agent of type θ derives utility

u (x,θ,x)− t (1)

from a action x and transfer t ∈ R. The aggregate effect x is a weighted average of

individual actions

x =
∫

v (x (θ) ,θ)dF(θ) (2)

We assume that the individual payoff characteristics and externality production can

each be summarized by a one-dimensional type. In other words, we can write

u (x,θ,x) = u (x,k (θ) ,x) (3)

v (x,θ) = v (x, l (θ)) (4)

for a pair of functions (k, l) : Θ→ [k0,K]× [l0,L] ⊂R
2. We assume concavity in the agent’s

action (uxx < 0) and ux(0, k,0) > 0 to ensure the existence of an interior optimum and the

following properties

uk ≥ 0, ukx ≥ 0, uxxk ≥ 0 (5)

ux ≥ 0, uxx ≤ 0, uxx ≥ 0,uxxk ≥ 0 (6)
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The payoff-type k behaves as in a standard screening model with single-crossing and the

usual condition ensuring convexity of the information rent.7 The global externality x

describes a (weakly) positive externality with diminishing returns that also increases the

marginal payoff from the activity x. For the influence function v, we maintain

vxx < 0, vl > 0, vxl > 0 (7)

This setup allows us to encompass both negative and positive externalities from the

agents’ actions in a common framework. If vx > 0, the activity produces a positive shift in

individual payoffs (per ux ≥ 0) and we assume that this technology is concave. If vx < 0,

we have a negative externality of the activity with convex costs (vxx < 0). This also allows

for a game with strategic substitutes between agents. In either case, agents with high

influence-type l are the “good types”, because they produce either a larger positive or

smaller negative externality as vxl > 0.

Although our type space is two-dimensional, only one of the coordinates enters the

agents’ utility. As we will show, the principal can – and will indeed find it optimal to –

elicit this payoff-irrelevant dimension and implement different contracts along it, a feature

of this environment that is subdued in a double-continuum type space but of key interest

to us. Let xk,l denote the allocation of type k, l.

Lemma 0. Suppose that k(Θ) is uncountable, that the induced distribution F ◦ k−1 is atomless,
and that xk,l is strongly increasing in k. Then, for almost all k, xk,l is constant in l.

Proof. Consider x(k) B minl xk,l . This has to be an increasing function and it has an

upwards jump wherever xk,l is not constant in l. As an increasing function can have at

most countably many points of discontinuity, we have the result.

Note the Lemma applies to the allocation in the full screening problem, as it has to be

increasing in k by incentive compatibility. Consequently, l can affect the allocation only

for countably many k, which is irrelevant for the principal in the double continuum case.8

As our interest lies in exploring the impact of heterogeneous influence on screening,

we instead consider finite type spaces. Let K×L denote the induced types space. By abuse

of notation, we denote the induced distribution by F. We assume that K×L is finite and –

as a normalization – let K×L = {k0, k0 + 1, . . . ,K} × {l0, l0 + 1, . . . ,L}.9 Henceforth, we write

fk,l for the probability mass and tk,l for the transfer of type k, l, et cetera. Apart from full

support, we make no restriction on fk,l . Importantly, we do not impose any correlation

structure.

7Since the function k(θ) is a derived object, this assumption simply implies that there exists such a linear
order on Θ, which implicitly defines k.

8For similar results establishing that payoff-irrelevant information cannot be used in a model with a
continuum type-space, see e.g. Jehiel and Moldovanu (2001), Shi and Xing (2020) and Akbarpour r⃝ al.
(2020).

9Note that this is for simplicity. We could allow for continuum L and – assuming a distribution with
atoms – even continuum K at the cost of more complex notation.
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Principal

The agents’ action is produced at zero marginal cost to the planner. The planner offers a

menu of contracts
{(
xk,l , tk,l

)}
k,l∈K×L to maximize expected transfers plus possibly a direct

payoff from the aggregate action, κ(x), subject to sorting and participation constraints.10

We assume that κ′ ≥ 0 and κ′′ ≤ 0. This aggregate term captures the impact of the

externality that is not mediated through the payoffs of the agents; for example the impact

of pollution on society at large. Finally, we assume as a non-triviality condition that the

externality has an impact on the principal’s problem, either directly or indirectly through

some type’s utility,

∀x, max
{
max
k∈K
{ux(0, k,x)} ,κ′ (x)

}
> 0. (NT)

We will consider several planner problems, each corresponding to a different assump-

tion on which consumer characteristics are observable. Throughout these problems,

the objective, the externality and the participation constraints will remain the same.

Depending on the misreports that are feasible (i.e. which characteristics are verifiable),

the problem will have different sorting constraints. We identify the sorting constraint

with the associated (pair of) types. Accordingly, the set of feasible deviations is denoted by

A ⊂ (K×L)2, where (k, l), (k′ , l′) ∈ A means that type k, l can imitate type k′ , l′ and therefore

a feasible allocation must satisfy the sorting constraint

u
(
xk,l , k,x

)
− tk,l ≥ u

(
xk′ ,l′ , k,x

)
− tk′ ,l′ . (ICk,l→k′ ,l′ )

The problem corresponding to a set of feasible deviations A is

π(A) := max
x,{(xk,l ,tk,l )}k,l∈K×L

∑
fk,ltk,l +κ(x) (8)

s.t. x =
∑

fk,lv
(
xk,l , l

)
(9)

∀k, l : u
(
xk,l , k,x

)
− tk,l ≥ 0 (Pk,l)

∀ ((k, l) , (k′ , l′)) ∈ A : u
(
xk,l , k,x

)
− tk,l ≥ u

(
xk′ ,l′ , k,x

)
− tk′ ,l′ (ICk,l→k′ ,l′ )

To save on notation, we suppress the non-negativity constraints xk,l ≥ 0. Table 1

specifies the set of feasible deviations associated with each observability assumption.

Throughout the paper, we will let ζ denote the Lagrange multiplier associated with the

payoff-type observable payoff-type not observable
influence observable ∅

⋃
l∈L (K× l)2

influence not observable
⋃

k∈K (k ×L)2 (K×L)2

Table 1: Four different observability assumptions as sets of feasible deviations.

10Note that every set of contracts induces a game among the consumers at the consumption stage, as
aggregate consumption is endogenous. Without loss of generality, we restrict attention to menus inducing
a pure strategy equilibrium. This is implied by the concavity of the planer problem, which we impose
throughout.
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constraint (9), i.e. the marginal increase in the principal’s objective associated with an

exogenous increase in the externality.

2.2 Applications

We now present three economic applications that fit our general framework. We will

return to simple 2-by-2 examples of these models to illustrate our results and their

implications throughout the paper.

2.2.1 Nonlinear Taxation of Externality Producing Goods

Consider a setting in which firms produce goods using a polluting process. They differ

in both their productivity and their pollution intensity. Pollution creates an atmospheric

externality (Meade, 1952). A regulator desiring to control the aggregate level of the

externality while raising tax revenue designs nonlinear production taxes.

A firm of type θ produces quantity x employing a perfect complement decreasing

returns technology x =
(
min

{
1
θ1
z1,

1
θ2
z2

}) 1
2 , where z1 is a clean factor (e.g. labor) and z2 is

a pollutant factor (e.g. gasoline). Let w1,w2 denote the factor prices, and we normalize the

price of output to one. Hence, profits are given by x− (w1θ1 +w2θ2)x2, and the externality

is −θ2x
2. The planner faces a disutility of pollution κ(x) = κx for κ > 0. This fits our

framework with k(θ) = 1
2

1
w1θ1+w2θ2

− 1, u(x,k,x) = x − 1
2(k+1)x

2, l(θ) = θ̄2 −θ2, and v(x, l) =

−
(
θ̄2 − l

)
x2, where θ̄2 is the upper bound of the support of θ2.11 A natural benchmark in

this setting is a Pigouvian tax on pollution or, equivalently, a tax on the pollutant factor.

However, such a tax or alternative policies such as mandates to use cleaner inputs or

processes are not feasible when pollution, input use, or the technology are not verifiable

or such measures are not politically viable. As an example, consider a firm sourcing raw

materials from mines located at various distances from the production facilities. Tightly

controlling the sourcing and transportation expenses is difficult, especially in an emerging

market context. The principal instead sets a menu of output levels and transfers, screening

both productivity (to generate revenue) and “greenness” (to curb pollution).

The fundamental parameters of the production function determine the payoff and

influence type. In particular, the pollutant factor requirement θ2 enters both k and l. The

correlation between the two is determined by factor prices and is typically non-zero even

if the fundamental parameters θ are independently distributed.

11Note that this joint definition of k, l rules out a rectangular type space with full support unless w2 = 0.
We can restore rectangularity with a more cumbersome parametrization.

Perfect complements and decreasing returns by contrast are required to fit the general framework:
decreasing returns for concavity and no substitutability to keep the payoff-type one-dimensional. Under
a more permissive functional form, we would obtain π (θ,w,x) =

∑
wizi (θ,w,x), which cannot in general

be written as π (k (θ) ,x,w) for a single-dimensional type k (θ). Indeed, this fails if w1 ·w2 , 0 whenever any
substitutability across factors is permitted.
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2.2.2 Sale of a Network Good

Consider a good with externalities in consumption, caused either by direct interaction

on the platform as in the case of Dropbox and Facebook or indirectly through the

availability of accessories as in the case of operating systems or interchangeable-lens

cameras (Farrell and Saloner, 1985; Katz and Shapiro, 1985). We follow the network

formation model formulated and applied in Galeotti and Goyal (2009) and Fainmesser and

Galeotti (2016).12 There is a continuum of consumers connected by a directed network.

A consumer’s marginal utility of consumption increases as others who influence her

increase their consumption. Formally, the influence parameter l coincides with the agent’s

in-degree (the number of consumers he influences), while the payoff parameter k is his out-

degree (the number of consumers he is influenced by). When making consumption choices,

consumers do not know the network structure, but only their in- and out-degree. They take

expectations over their realized utility conditional on this information alone. Accordingly,

the utility is expressed as u(x,x,k) = x + γkxx − 1
2x

2 − t, where γ ∈ R+ parametrizes the

intensity of the externality and x =
∑

k,l fk,l
l

E[l]xk,l . Individuals take account of the fact

that they are more likely to link to influential individuals, which consequently need to

be over-counted relative to their frequency in determining the expected consumption

of a neighbor. Clearly, this specification fits into our general framework with utility

u (x,k,x) = (1 + γxk)x − 1
2x

2, a consumption externality v (x, l) = l
E(l)x and no direct social

impact of aggregate consumption κ(x) = 0.

This reduced form can also be interpreted as an aggregate externality: Agents directly

care about the weighted population average of x, e.g. due to a desire to conform; they

differ in both this desire k and their visibility or social status l.

2.2.3 Human Capital

Human capital accumulated through learning-by-doing is often proposed as a propellant

of economic development (Lucas, 1988). Consider the following highly stylized steady-

state model of the labor market. Firms and workers are matched randomly for one

period. Working creates human capital that is carried over into the next period; firms

are heterogeneous in both how much they rely on human capital and how much human

capital they bestow to their workers.13

Let h denote the average human capital in the economy. The effective labor units

of a firm with productivity k employing a measure h of workers are khh. The firm

operates a Cobb-Douglas technology with decreasing returns (α < 1), generating profits

12A recent literature focuses on the use of network information by a monopolist, both in the case of an
explicit finite network (e.g. Bloch and Quérou, 2013; Candogan et al., 2012; Gramstad, 2016) and when
consumers only know their level of susceptibility and/or influence (Fainmesser and Galeotti, 2016; Zhang
and Chen, 2020). We adopt the demand and interaction specification developed in the latter in our example,
but focus on the screening problem.

13Indeed, Arellano-Bover and Saltiel (2021) show that returns to experience are highly heterogeneous
across firms and are not well explained by firm observables, supporting the assumption that such
characteristics are not easily observed by the planner.
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u(h,k, h̄) =
(
khh

)α
−wh for a wage rate w. We assume that w is unaffected by the level

of aggregate human capital (there is a reserve army of the unemployed working in the

traditional sector). The human capital formed by employment in a firm of type l by

v (h, l) = hl. The ministry of economic development chooses a nonlinear employment

subsidy to maximize human capital subject to a cost of funds λ, i.e. κ(h̄) = h̄
λ

.

A similar model can be employed to study task allocation in a big corporation where

employees are allocated across heterogeneous divisions by the headquarter: Compared to

the headquarter, individual divisions care more about their revenue and less about the

development of human capital as workers will be reassigned.

3 Benchmark Allocations

We first characterize the efficient allocation and argue that it can be implemented as

long as the principal observes the payoff-type, and even when agents can "inflate" their

payoff-types. An important implication is that the unobservability of influence does not

create any rents and distortions. Then, we characterize the decentralized solution.

3.1 The First Best

The efficient allocation solves the principal’s problem without incentive compatibility

constraints, π (∅). In order to guarantee the existence of a solution it is not sufficient

to assume concavity of the agents’ utility function. Instead, concavity of the planner’s

problems arises jointly from the agents’ utility and the aggregate externality. The following

Lemma leverages the fact that we can focus on two dimensions of the allocation, the

subspace along which externalities are produced and consumed.

Lemma 1. The first-best problem is globally concave if and only if the value of the maximization
problem14

max yT
(
dg([uxx] + (Eux +κ′) [vxx]) + (Euxx +κ′′)

[√
f vx

] [√
f vx

]T
+ 2Sym

([√
f uxx

] [√
f vx

]T
))
y

(10)

s.t. y ∈ span
([√

f uxx
]
,
[√

f vx
])
,

∥∥∥y∥∥∥ = 1

is strictly negative for all x ≥ 0 and bounded away from zero for ∥x∥ large.

Note that all the expressions in (10) depend implicitly on the full allocation x. The

condition provides a tight bound for the general non-parametrized case and simplifies to

parameter restrictions in our examples. In the application to network goods, we obtain an

upper bound on the degree of complementarities,

γ <
E[l]√

E[k2]E[l2] +E[kl]
. (11)

14dg(a) denotes the diagonal matrix with entries provided by the vector a, Sym(A) = A+AT

2 ,
[√

f vx
]

denotes

a column vector with typical element
√
fk,lvx(xk,l , l) and so on.

11



In the pollution case, we have ux = 0 and hence the condition is implied by the concavity

of u and v. From now on, we assume that the condition of Lemma 1 is met.

The efficient allocation maximizes individual utility with the adjustment term vx
(
x⋆k,l , l

)
ζ⋆

taking the externality into account. This adjustment is proportional to the shadow value

of x, which corresponds to the surplus generated by the externality.

Proposition 1. The efficient allocation x⋆ solves

0 = ux
(
x⋆k,l , k,x

⋆
)

+ vx
(
x⋆k,l , l

)
ζ⋆ (12)

ζ⋆ =
∑

fk,lux
(
x⋆k,l , k,x

⋆
)

+κ′(x⋆) (13)

x⋆ =
∑

fk,lv(x⋆k,l , l) (14)

A monopolist observing both the payoff- and influence-type implements the efficient

allocation and extracts all surplus. Agents receive the same level of utility (zero) in the

optimal contract, in particular influence is neither rewarded nor punished.

Example (Network Good cont’d). For the sale of a network good, we can solve (12) in

closed form and obtain x⋆k,l = 1 + γx⋆k + ζ⋆ l
E[l] . In order to produce the efficient level of

x, the planner induces all types to overconsume relative to their privately optimal level

1 + γxk. This is especially pronounced at high levels of influence. Such "influencers" are

not compensated with higher utility, but they are held indifferent through lower unit

prices
t⋆k,l
x⋆k,l

= 1
2

(
1 + γx⋆k − l

E[l]ζ
⋆
)
.

Observable (Lower Bound of) Payoff-Types We now turn to the case where the principal

observes the payoff-type of the agents, while their influence is private information. The

allocation therefore needs to satisfy the sorting constraints
⋃

k∈K (k ×L)2. As l does

not directly enter the utility function, sorting is equivalent to the requirement that the

utility of type (k, l) in their respective contract is independent of their level of influence l.

Otherwise, every agent of payoff-type k would mimic the type k, l′ whose contract delivers

the highest level of utility. Formally,

Lemma 2. A menu of contracts satisfies the
⋃

k∈K (k ×L)2 sorting constraints if and only if for
each k, l, l′

u(xk,l , k,x)− tk,l = u(xk,l′ , k,x)− tk,l′ (H)

The first-best contract with full rent extraction satisfies condition (H) since all types

receive zero utility. Therefore, it is feasible and hence optimal for the principal. Even

though the problem has a full dimension of private information, it collapses for a given k

as influence does not interact with the contract terms. Eliciting influence by itself does

not introduce distortions and information rents.

Efficiency is preserved even if we relax the observability of the payoff-type and assume

instead that agents cannot underreport their payoff-type but can still exaggerate it and
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misreport (in any way) their influence.15 This may occur due to a technological constraint

or because the seller has correct information about a lower bound of k, which is a

compelling assumption in social media settings where the payoff-type is tightly linked to

the time spent on the website (identifiable by the provider and not easily hidden or split

across multiple accounts). Because only downward payoff-type misreports will bind in

the full screening problem of Section 4, ruling out those deviations is sufficient to make

the first best implementable even if the influence-type remains unobserved. Formalizing

this discussion, we have

Proposition 2. x⋆ solves both the problem with known payoff-type and the problem where
agents can only inflate their payoff-type.

3.2 The Decentralized Solution

As a final benchmark, we consider the case where every agent has access to the production

technology and chooses xD
k,l to maximize u(x,k,x) taking x as given. Observe that xD

k,l = xD
k ,

as influence does not enter the utility function. A decentralized allocation solves

ux(xD
k , k,x) = 0,∀k ∈ K xD =

∑
fk,lv(xD

k , l) (15)

For any given x, the privately optimal allocation is unique by concavity. We provide an

existence condition, which bounds the strength of positive externalities, as Lemma 4

in the appendix. An equilibrium
(
xD,xD

)
may not be unique and the equilibria are

Pareto-ranked in x, as higher aggregate activity increases private utility.

Example (Human Capital). In the setting of Section 2.2.3, the decentralized conditional

labor demand is given by hD
k =

(
α
w

) 1
1−α

(
kh

) α
1−α . Notice that the non-triviality condition (NT)

does not rule out a degenerate decentralized equilibrium. A non-trivial equilibrium exists

if α < 1
2 and is given by h =

(
α
w

) 1
1−α

E

[
lk

α
1−α

] 1−α
1−2α .

Example (Network Good). In the setting of Section 2.2.2, there is a unique decentralized

equilibrium given by xD
k = 1 + γkxD with aggregate consumption xD =

(
1− γE[kl]

E[l]

)−1
.

The externality in the decentralized case is merely a byproduct of privately-chosen

consumption. Fixing the marginal distribution over k and l, it is increasing in the

covariance of payoff- and influence-type. The decentralized outcome coincides with

the first best if γ = 0. Both aggregate consumption and total surplus in the decentralized

outcome fall short of their first-best values when γ > 0.

4 Full Screening

We now turn to the case in which both payoff- and influence-type are not observed, so the

principal solves the two-dimensional screening problem with consumption externality

15Formally, the monopolist faces the problem π (
⋃

k∈K (k ×L)× (k+ ×L)) where k+ B
{
k′ ∈ K : k′ ≥ k

}
.
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π (K×L)2. In this section we i) establish that full screening allocations are increasing in a

predetermined order (lexicographic monotonicity), ii) deal with the monotonicity con-

straints through two-step ironing procedure and then iii) discuss the general properties

of the second-best contract.

4.1 Lexicographic Monotonicity

Let ≻ be the lexicographic order on K×L where K is the dominant dimension, that is

(k, l) ≻ (k′ , l′) ⇐⇒ k > k′ or k = k′ and l > l′ , (16)

graphically represented in Figure 1. Denote by M := {x ≥ 0 : x is weakly increasing in ≻}
the set of lexicographic-monotonic allocations.

Theorem 1 (Lexicographic Monotonicity). If x solves π (K×L)2, then x ∈M.

                                 

K , l0 K , L

k0 , l1
k0 , l0 k0 , L

k1 , l0

⋮ ⋮⋮ ⋮

⋯

⋯

 l0  l1 LInfluence type 

Payo
ff typ

e 

 k0

 k1

K

⋯

⋮

⋯

Figure 1: The Lexicographic Order ≻.

Theorem 1 is important both from

a technical and from an applied per-

spective. First, it establishes that the

optimal allocation is increasing in a fixed

total order of types despite the apparent

multidimensionality of the problem, which

allows us to build on tools from one

dimensional screening to characterize

the solution. Second, some important

properties of the full-screening allocation

can be deduced directly from Theorem 1.

In particular, the principal finds it optimal

to sort individuals along a dimension that

does not enter their utility by giving them the flexibility to choose from a range of

options, but is also limited in his ability to exploit this dimension. Intuitively, incentive

compatibility requires monotonicity in the payoff-type and constrains the ability to

increase the allocation of influential agents to move the externality in the desired direction.

Lexicographic monotonicity emerges as a natural way to resolve this tension. The

remainder of this section is devoted to proving the Theorem and building the intuition

behind the result.

Implementable Allocations

To establish Theorem 1, we first need to characterize the implementable allocations.

Following the usual argument combining upward and downward incentive compatibility

between two types, any implementable allocation has to satisfy monotonicity along

the payoff-type. Importantly, this is required for any combination of influence types.
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Conversely, for any such allocation, we can find transfers that satisfy the incentive

compatibility and participation constraints.

Lemma 3. There exists a vector of transfers implementing x if and only if it satisfies k−monotonicity,
namely for every if for every k,k′ , l, l′,

(
xk,l − xk′ ,l′

)
(k − k′) ≥ 0. (17)

In contrast to a well-behaved screening problem without externalities, the first- best

may fail to be implementable in our setting. This is because the efficient allocation of

agents with high influence but low payoff-type is inflated in order to create the externality.

We illustrate this tension in the following example.

Example (Pollution 2 × 2). Consider the setting of Section 2.2.1 with K = {0,1} and

L = {0,1}: Apart from differences in productivity, there is one polluting sector l = 0 and

one green sector l = 1, i.e. the green sector does not pollute at all. As x does not enter firm

profits and the marginal social cost of pollution is constant, we have ζ⋆ ≡ κ and the first

best is given by (
x0,0,x0,1,x1,0,x1,1

)⋆ =

 1
1 +κ

,1,
1

1
2 +κ

,2

 . (18)

The allocation x⋆ satisfies k−monotonicity if and only if κ ≤ 1
2 . Intuitively, when damage

from pollution high, dirty high-productivity firms are required to produce less than clean

low-productivity firms, which is ruled out by incentive compatibility in the full screening

problem.

Remark. The decentralized solution xD, by contrast, is always implementable as it is flat

in l and increasing in k.

Because of the multidimensionality of the full-screening problem, monotonicity along

the payoff type is not the only necessary condition for implementability. Since the problem

contains all sorting constraints along the influence dimension, Lemma 2 implies that

utility has to be constant along the l dimension whereby condition (H) remains necessary.

Therefore, a slice k ×L of the type space can be treated as a single type for the purpose

of outward deviations and we can denote Uk B u(xk,l , k,x)− tk,l the utility of agents with

payoff-type k as a function of the contract. By standard arguments, sorting constraints

and participation of the lowest payoff type

Uk0
≥ 0 (P)

imply all other participation constraints.

Extremal Sorting

To reduce the cardinality of the sorting constraints, notice that we can rank the attractive-

ness of contracts in each k ×L slice by quantity alone: Higher payoff-types will prefer the
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contract with the highest allocation, while lower payoff-types will prefer the contract with

the lowest allocation. Furthermore, as a consequence of single-crossing, we can restrict

attention to local misrepresentation of the payoff-type. Consequently, for types in k ×L,

the relevant downward deviation is towards the contract giving the highest consumption

in the k −1×L slice, whereas the relevant upward deviation is towards the contract giving

the lowest consumption in the k+1×L slice. If it is not profitable to deviate to the contract

with the largest (smallest) level of consumption in the slice, it is not profitable to deviate

into the slice at all. Formalizing this discussion, we have

Definition 1. A menu of contracts {(xk,l , tk,l)}kl∈K×L satisfies extremal sorting (ES) if, for

each k,

Uk ≥ u(min
l

xk+1,l , k,x)−max
l

tk+1,l (ES-Ak)

Uk ≥ u(max
l

xk−1,l , k,x)−min
l

tk−1,l (ES-Bk)

Proposition 3. An allocation satisfies k-monotonicity, (H), (P) and extremal sorting if and
only if it satisfies all participation and incentive constraints (K×L)2.

Influence Identifies Extremal Types

In order to pass from the necessary conditions in Proposition 3 to lexicographic mono-

tonicity (and hence complete the proof of Theorem 1), we need to identify the set of

extremal types within a slice k ×L. In particular we need to show that influence, namely

the dimension of heterogeneity that was immaterial so far, determines which types have

the highest (and lowest) allocation within any payoff-type slice.

The key step to establish this result is that the principal always benefits from a

marginal (windfall) increase in x, all other things being equal. A positive marginal

value of the aggregate action for the monopolist is a natural yet not immediate result.

In contrast to the symmetric information benchmark, under asymmetric information x

impacts revenues in two opposing ways: On the one hand, increasing x increases total

surplus; on the other hand, it increases the information rents. We show in the Appendix

that the first effect always dominates and hence the Lagrange multiplier on the aggregate

externality constraint, ζ, is positive. Consequently, a variational argument reveals that

within a k ×L slice the principal always desires to allocate higher levels of consumption

to more influential types – a change that increases x while even increasing the surplus

generated within the slice. Since Proposition 3 implies that only the largest xk,l in a slice

k ×L is relevant for deviation, adding the sorting constraints does not alter this property.

Combining this fact with k-monotonicity, we conclude that the optimal allocation has to

be lexicographic monotonic.
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The Relaxed Problem

By Theorem 1, we can rewrite the principal’s problem as a monotonicity constrained

optimization in terms of virtual values. This problem is one-dimensional along the

lexicographic order.

Proposition 4. The problem π (K×L)2 is equivalent to

max
x∈M

∑
fk,l

[
u
(
xk,l , k,x

)
−1l=L ·

{
1− F(k)
fk,l

∫ k+1

k
uk

(
xk,l , j,x

)
dj

}]
+κ(x) (UP)

s.t. x =
∑

fk,lv
(
xk,l , l

)
(ζ)

where F(k) =
∑

l,j≤k fj,l denotes the c.d.f. on the payoff-type dimension.

The indicator function 1l=L in the expression of the virtual value makes it apparent

that because of lexicographic monotonicity, the sorting constraints affect only the highest

influence type directly. In the Appendix (Lemma 7), we provide general conditions that

ensure that the principal’s problem (UP) is strictly concave and therefore admits a unique

solution. Similar to the first best (Lemma 1), they involve maximizing a two-dimensional

quadratic form. Under this condition, the full screening contract induces a pure strategy

equilibrium among agents. In the sale of a network good from Section 2.2.2, we obtain a

bound on the degree of complementarities

γ <
E [l]√[∑

k
(1−Fk)2

fk,L
+E [k]

]
E

[
l2
]

+ [E [kl]− L(E [k]− k0)]

(19)

In the pollution case the condition is implied since ux = 0 and ukxx = 0. Throughout this

section, we assume that the concavity condition is satisfied. We therefore have a unique

solution to our program, which we denote by xFS.

4.2 Two-Step Ironing Procedure

To achieve a closer characterization of the optimal allocation we need to deal with the

lexicographic monotonicity constraint xFS ∈M. We propose an ironing procedure that

proceeds in two steps: First, we solve for the optimal allocation for fixed aggregate

variables and then we pin down the aggregate variables (x,ζ). We postpone the discussion

on the economic properties of the resulting optimal contract to the next section.

Step 1: Allocation Conditional on Aggregate Variables

To characterize this allocation, we adapt standard techniques (Myerson (1981); Toikka

(2011)) to the problem rendered one-dimensional by Theorem 1. Given x,ζ, the principal’s
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objective can be written as a weighted sum of virtual values

max
x∈M

∑
k,l

fk,l · J(xk,l , k, l,x,ζ)

where J(·) = u
(
xk,l , k,x

)
−1l=L

{
1− F(k)
fk,l

[
u
(
xk,l , k + 1,x

)
−u

(
xk,L, k,x

)]}
+ ζv

(
xk,l , l

)
(20)

Pointwise maximization of J(·) defines a candidate allocation x̂ (x,ζ) which, by concavity

of the (rescaled) virtual value, solves

Jx
(
x̂k,l , k, l,x,ζ

)
= 0.

Clearly, if x̂ (x̄,ζ) ∈M, then x̂ (x̄,ζ) is the solution of the problem given x̄,ζ. Otherwise, the

allocation needs to be ironed.

Let k(q), l(q) : [0,1] 7→ K×L trace out the distribution f on K×L along the lexico-

graphic order. In other words, if q ∈
[∑

i,j≺k,l fi,j ,
∑

i,j≾k,l fi,j
)
, we have k(q) = k and l(q) = l.

Denote an inverse by q(k, l) =
∑

i,j≺k,l fi,j . The cumulative virtual value is given by

H(x,q) =
∫ q

0
Jx(x,k(r), l(r),x,ζ)dr (21)

It follows from Toikka (2011) that ironing the original problem is equivalent to convexify-

ing H (see Figure 2). For every x, let G(x, ·) := Conv H (x, ·) := max{g (x, ·) ≤ H (x, ·) |g is convex}
which is continuously differentiable almost everywhere on [0,1]. If H(xk,l ,q) < G(xk,l ,q),

the lexicographic monotonicity constraints are active at the corresponding type and there

is bunching. Let

J (x,k, l,x,ζ) = J(0, k, l,x,ζ) +
∫ x

0
Gq (ξ,q (k, l))dξ (22)

denote the ironed virtual value. This procedure yields the conditionally-ironed allocation

y : R2 7→R
|K×L|, that is

y(x,ζ)B argmax
x≥0

∑
J (x,k, l,x,ζ) . (23)

Remark. As our type space is finite, the convexification is easy to compute. A simple

algorithm proceeds downwards in the lexicographic order and “greedily” irons out

violations of convexity as it encounters them. It finishes in at most |K ×L|+ 1 steps.

Step 2: Solving for the Aggregate Variables

Using the conditionally-ironed allocations y that we solved for in the previous step, we set

up an auxiliary fixed point problem and show that a solution to this two-step procedure

corresponds to the solution of the relaxed problem (UP).

Theorem 2. The allocation xFS solving π (K×L)2 satisfies

xFS = y(xFS,ζFS) (24)
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Figure 2: The convexification (blue) of the cumulative virtual value (crimson) results in a bunching region
around a switching type (Proposition 5-ii)).

where (xFS,ζFS) is the unique fixed point of the self-map Γ : R2 7→R
2 given by

Γ

 x

ζ

 =


∑
fk,lv

(
yk,l (x,ζ) , l

)∑
fk,l

(
ux(yk,l (x,ζ) , k,x)−1l=L

1−Fk
fkl

∫ k+1
k

ukx
(
yk,l (x,ζ) , j,x

)
dj

)
+κ′(x)

 (25)

Theorem 2 by itself does not serve to prove existence and uniqueness of xFS, which

instead follows from the condition we provide in Lemma 7 of the Appendix. Instead,

it establishes that the two-step ironing procedure yields the solution of the general

problem π (K×L)2. This means that all properties of the optimal allocation conditional

on aggregate variables that we derive in the next section (Proposition 5), also characterize

the solution to π (K×L)2.

4.3 Properties of the Full Screening Contract

We now discuss the properties of the optimal contract that results from the ironing

procedure described in Section 4.2. It is instructive to start by identifying the threats to

monotonicity of the allocation.

Direct inspection of (20) makes it apparent that, contrary to the textbook screening

model, a simple condition on primitives is not sufficient to rule out violations of lex-

icographic monotonicity of the virtual value J. Two threats are indeed specific to our

setting (see Figure 2). First, the screening distortions on the whole k ×L slice accumulate

on the type k,L,16 but the resulting downward distortion will typically be propagated

along the l-dimension by lexicographic monotonicity. Such propagation would occur

even if single-crossing and monotone hazard rate conditions are satisfied. The second

source of violations of lexicographic monotonicity of J is the jump between type k,L and

its successor k + 1, l0. On the one hand, the latter has a higher payoff-type so the first

16Recall that the sorting constraints directly affect only the highest influence type within a payoff slice.
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addendum in his virtual value is larger; on the other hand, he is less influential, which

reduces his impact on the externality and consequently the last addendum in his virtual

value. We illustrate these counteracting forces in the 2× 2 pollution setting where we can

solve for the allocation in closed form.

Example (Pollution 2× 2). The pointwise maximizer of the objective (UP) is

(
x̂0,0, x̂0,1, x̂1,0, x̂1,1

)
=

 1
1 +κ

,1−
1− f0,0 − f0,1

1− f0,0 + f0,1
,

1
1
2 +κ

,2

 (26)

The allocation x̂ violates lexicographic monotonicity between (0,0) and (0,1) if

f0,1 <
1− f0,0

2κ
(27)

i.e. whenever the downward distortion due to the sorting constraint is larger than the

reduction in output due to pollution for type (0,0). Monotonicity is violated if κ ≈ 0 or if

the downward distortion is large as f0,1 ≈ 0. In this case, the two low-productivity types

will be bunched. The allocation x̂ violates lexicographic monotonicity between (0,1) and

(1,0) if

f0,1 >
1− f0,0

1 + 2κ
(28)

i.e. whenever the downward distortion of (0,1) due to sorting is smaller than the reduction

in output of (1,0) due to the downward jump in influence between (0,1) and (1,0).

Combining both inequalities, we see that the pointwise maximizer x̂ solves the full

screening problem if and only if

κ ∈
[

1− f0,0

2f0,1
− 1

2
,
1− f0,0

2f0,1

]
. (29)

(0,1)

(0,0)

(1,0)

0.5 1 1.5 2
κ

Production

Screening

Efficient

0.5 1 1.5 2
κ

Pollution

Figure 3: Production and aggregate pollution as a function of social cost κ.

The ironing procedure has important consequences for the impact of screening on

pollution, as illustrated in the second panel of Figure 3. In the unconstrained case,
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the downward distortion only affects the "green" type (0,1). Therefore, the pollution

mitigation and rent extraction motive are independent and x⋆ and xFS coincide. This

is the case when the costs of pollution for the principal are intermediate. When the

monotonicity constraint between (0,0) and (0,1) is binding, the "dirty" type is distorted

downwards and the rent extraction motive leads to pollution lower than in the first best.

This is the case when the cost of pollution for the principal are low. When instead the

monotonicity constraint between (0,1) and (1,0) is binding, the need for screening high-

from low- productivity types depresses the output of the inefficient green type in favor of

the efficient dirty type, which makes a reduction in pollution more costly in terms of total

surplus than in the unconstrained case. This leads to pollution in excess of the first-best

level exactly when the costs of pollution are high for the principal.

A key simplifying feature of the example above is that ζ is pinned down exogenously.17

In general, however, we cannot determine whether ironing is required based on simple

conditions on primitives, as they include the endogenous aggregate variables x and ζ. For

example, in the sale of a network good the solution requires ironing unless for all k

ζ
L− l0
E[l]

< γx

(
1 +

1− F(k)
fk,L

)
< γx+ ζ

1
E[l]

. (30)

which clearly cannot hold for all x,ζ. While we cannot provide useful general conditions

that ensure that the lexicographic monotonicity constraint is inactive, we can derive

general properties of the optimal allocation.

Proposition 5. The ironing procedure induces a partition of types B, with typical element B,
ordered by ≻. The optimal allocation xFS is constant within cells and strictly increasing across
cells. The bunching regions have the following properties

1. There is no bunching at the top of the lexicographic order: {(K,L)} ∈ B.

2. Every nontrivial cell of B contains a switching type in ≻: |B| > 1 =⇒ ∃ (k,L) ∈ B.

3. Suppose that the externality is positive (vx ≥ 0). There is active influence tilting within
a payoff slice only if the higher influence-type consumes more than his decentralized
allocation: xFS

k,l > xFS
k,l−1 =⇒ ux

(
xFS
k,l , k,x

)
< 0.

In the network good application we have a closed form for the allocation of types in a

bunching cell B,

xB = 1 + γx

(
E [k |B]−

∑
k,l≻B fk,l∑

(k,l)∈B fk,l

)
+ ζ

E [l |B]
E [l]

(31)

which is intuitive since agents consume according to the expected payoff- and expected

influence-types in their partition cell.18

17We can obtain a closed form solution in the pollution setting (Section 2.2.1) because there is constant
marginal social benefit of x and the aggregate outcome does not directly enter the agents’ utility.

18We provide a general, less interpretable expression as equation (95) in the appendix.
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The first property provides a weak analogue to the “no distortion at the top” results

common across screening models: For a given externality x and value of the externality

ζ, the highest type is not affected by the ironing procedure. Therefore, his action – just

like the action of any type k, l with l , L who is unaffected by ironing – coincides with the

efficient allocation given x̄ and ζ. It is, however, distorted relative to the decentralized and

relative to the unconditionally first-best consumption and even given x, as the value of

the externality for the monopolist generally differs from ζ⋆ .19 Agents with the highest

payoff-type but lower influence, can still be affected by ironing (recall, e.g., that in the 2×2

Pollution Example, the efficient but dirty type was distorted for intermediate social costs

κ). The second property says that every bunching region includes an agent with the highest

influence. It is around these types that the non-monotonic virtual values can arise: Either

their action is heavily downward distorted to reduce information rents of higher types

and they are bunched with less influential agents of the same (or lower) payoff-type, or

their action is distorted upward to promote the externality and they are bunched with less

influential agents of higher payoff-type (see Figure 2). Bunching regions “strictly within”

a payoff slice are never optimal as virtual values are locally increasing: influence grows

and there are no screening distortions as all accumulate on types with influence L. As for

the third property, notice that when the externality is positive, ux
(
xFS
k,l , k,x

)
< 0 implies

that the decentralized solution associated to the full screening aggregate activity, xD
k (x), is

greater than xFS
k,l . Whenever the optimal menu offers flexibility for self-selection based on

influence, the more influential agents consume more than their privately optimal level.

In other words, flexibility is only optimal if the provision of the externality overpowers

the usual downward-distortion motive. When the externality is negative, by contrast, all

types consume less than their privately optimal level as both the screening as well as the

externality-provision distortions push in the same direction.

We now illustrate the general properties derived in Proposition 5 in a 2 × 2 network

good application.

Example (Network Good 2 × 2). Consider the setting of Section 2.2.2 with K = {0,1}
and L = {0,1}: agents with payoff-type 0 are not susceptible at all to the externality,

ux (0, ·) ≡ 0; agents with influence type 0 do not create any consumption externality,

v (0, ·) ≡ 0. Given this parametrization three cases emerge as a full screening solution,

depending on complementarities γ and the distribution of types f .

1. Low susceptibility agents are bunched and excluded, x1,1 > x1,0 > x0,1 = x0,0 = 0.

2. Low susceptibility agents are bunched at a positive level of consumption, x1,1 >

x1,0 > x0,1 = x0,0 > 0

3. The allocation satisfies strict monotonicity along the lexicographic order, x1,1 > x1,0 >

x0,1 > x0,0 = x⋆0,0 = 1.

19In the pollution example, we have ux ≡ 0 and linear κ, and therefore always ζ = κ. Hence, if x⋆ = xFS –
which is the case for an open set of parameters, see (29) – the highest type produces at the (unconditionally)
efficient level.

22



Figure 4 displays these possible regions. For every distribution, at γ = 0 every type

consumes 1 (the first-best allocation) as there are no externalities and differences between

payoff-types. For low γ, there is always bunching of the non-susceptible agents; local to

γ = 0, this level is decreasing in the degree of complementarity as the differences between

payoff-types also increase. As γ approaches its upper bound γFS, given in (19), two things

can happen (depending on the distribution of types): either the bunching level drops to 0

and the non-susceptible agents are excluded, or it bends back to 1 and the allocation is

strictly monotonic. Notice that all properties in Proposition 5 hold: Type (1,1) is never

bunched. The second property holds vacuously in a 2 × 2 example. To check the third

property, recall from Example 3.2 that xD
k (x) = 1 +kγx. Agents that are not susceptible are

separated in the full screening solution if and only if x1,0 > 1 = xD
0 , namely for large γ in

the right panel of Figure 4. Agents that are susceptible are always separated since

xFS
1,1 > 1 + γx+

ζ

E [l]
> 1 + γx = xFS

1,0 = xD
1 (x) (32)
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Eventual Strict Monotonicity

Figure 4: Consumption in the 2 × 2 example as a function of complementarities. Type distributions f =
(.1, .1, .2, .6) (left, switching from region 2 to 1) and f = (.3, .3, .3, .1) (right, from region 2 to 3).

As for the aggregate variables and welfare, recall that aggregate consumption is

inefficiently low in the decentralized outcome. The ranking of total surplus between the

decentralized and second-best allocation is ambiguous. On the one hand, the screening

motive of the principal induces a downward distortion, on the other hand, the principal

internalizes the aggregate externality. We show by means of example (Figure 5) that the

decentralized solution dominates the screening solution in terms of total surplus and

consumer surplus for low γ, but screening performs better for sufficiently high γ, even in

terms of consumer surplus.20

As we have seen in the examples of this section, the aggregate externality xFS can

exceed (2x2 pollution example) or fall short of (2x2 pollution and 2x2 network good

examples) its first-best level. The overall effect depends on the interplay of the downward

20Clearly, the latter result depends crucially on the distribution of types. Regardless of the externality,
if the type of the agent is almost known, there will be almost full extraction. In the example, type (0,1) is
relatively abundant, linking information rents to the creation of the externality.
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Figure 5: Aggregate measure in the 2x2 consumption example (f = (.45, .3, .05, .2)) as a function of
complementarities.

distortion commonly associated with screening contracts, the impact of x on information

rents and the ironing procedure. This interplay also makes it difficult to obtain general

conditions, whereby a case-by-case analysis is required. In the network good example, we

show in the appendix (B.2) that when the full screening solution does not require ironing,

we always have xFS < x⋆ .

5 Observable Influence

In some markets, social media influencers obtain sizable payments and lucrative deals to

promote products. Are such rents from influence consistent with the market structure we

study? As we have seen so far, they do not arise when the payoff-type is observed – all

surplus is extracted by the principal. When both characteristics are private information,

the horizontal sorting condition (H) implies that utility is constant in a payoff-type slice.

Again, no rents from influence arise. One may think that our model rules out influence

rents since "influencers" lack market power; after all there is a continuum of them. In this

section, we show that this is intuition is incomplete by investigating the final observability

assumption: influence is observed, while the payoff-type is private information. While

rents from influence cannot emerge directly, they can emerge indirectly as a result

of screening along the payoff-type. Motivated by the application and to simplify the

exposition, we will focus on the pricing of a network good with linear quadratic utility

(Section 2.2.2).

The monopolist can condition consumption on the observable l but has to ensure

the types k sort into their contract. Therefore – for a given x – the observable-influence

allocation xOI solves a sequence of |L| one-dimensional screening problems. As per

standard arguments, we can rewrite each as the maximization of virtual value subject

to a monotonicity constraint. The problems for different l are however coupled through

aggregate consumption x.
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Proposition 6. The maximization problem π
(⋃

l∈L (K× l)2
)

is equivalent to

max
x,x

∑
k,l

fk,l

{(
1 + γx

(
k − F(K|l)− F(k|l)

f (k|l)

))
xkl −

1
2
x2
kl

}
(33)

subject to the aggregate effect, non-negativity and monotonicity conditional on l.

In this case, violations of monotonicity are solely the mechanical consequence of a

non-monotonic inverse hazard rate of the conditional type distribution. We hence restrict

attention to the regular case in which the monotonicity constraints are slack.

Assumption 1. For every l, the virtual value k − F(K|l)−F(k|l)
f (k|l) is nonnegative and increasing in k.

Analogous to the full information case, the first-order conditions of this problem have

two components. The first part is the familiar screening formula, the second adjusts

consumption upward for influential individuals in order to provide a stronger externality.

xOI
k,l = 1 + γxOI

(
k − F(K|l)− F(k|l)

f (k|l)

)
︸                               ︷︷                               ︸

optimal screening for fixed x

+
l

E[l]
ζOI

︸   ︷︷   ︸
provide public good x

(34)

Agents receive information rents for their payoff-type k. The magnitude of these rents

depends on the level of consumption of agents with the same l but lower k. Therefore, the

rent of type (k, l) is dependent on his (observable) level of influence. We say that there are

rents from influence if, for every fixed k, the information rent is increasing in l. There are

expected rents from influence if the expected rent is increasing in l.

The information rent of type (k, l) can be written as γx
∑

j<k x
OI
j,l . Influence affects

optimal consumption and hence information rents through two channels. First, more

influential individuals consume more and high levels of consumption cause high rents.

Second, influence has an effect on the downward distortion of consumption as it is used

as a signal of the payoff-type. If k and l are independent, this second effect is shut down;

then, rents (and expected rents) from influence always arise due to the first channel. If

payoff- and influence-type are instead affiliated, the downward distortion increases with

influence since the latter predicts a larger share of high payoff-types. Whether rents from

influence emerge therefore depends on the direction and relative strength of these two

forces. Formally, the rents of type k, l are proportional to

ξ(k, l) := γ k
l

E[l]︸︷︷︸Ξ

provision of x

−
∑k−1

j=0
1− F(j |l)
f (j |l)︸           ︷︷           ︸

screening distortion

, (35)

where Ξ := E[k] + E[
(1−F(k|l)

f (k|l)

)2
] denotes a moment of the type distribution measuring

both the scale of externalities and how informative the observable influence is about the

payoff-type.
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Proposition 7. Suppose that the non-negativity constraints are slack.

1. There are rents from influence if and only if, for all k, ξ(k, l) is increasing in l.

2. There are expected rents from influence if and only if E[ξ(k, l)|l] is increasing in l.

In general, rents and expected rents from influence do not imply each other, as we

illustrate in our running example.

Example (Network Good 2× 2 cont’d). We further parameterize the 2× 2 network good

setting by the covariance of k and l, letting f0,0 = f1,1 = .25 + ρ, f0,1 = f1,0 = .25− ρ.21 We

highlight some features of the solution (detailed in B.3) in Figure 6.

In the first two panels we compare the full screening contract with the observable

influence contract. Aggregate consumption is smaller with observable influence when

there is moderate positive correlation. This results from the large downward distortion

of x0,1 chosen in order to depress the information rents of the relatively common type

(1,1), a motive that is attenuated when l is not observed. Clearly, the profit of the seller

is weakly higher when influence is observable, with equality only when xOI
0,0 = xOI

0,1, i.e.

when the observable-l contract is incentive compatible in the full screening problem (the

tangency point in the top right panel).

In the bottom panels we plot rents and expected rents from influence. For ρ < 0, there

are always (pointwise) rents from influence. Both the relative abundance of low payoff-

types and the motive to provide the consumption externality push towards a relatively

high xOI
0,1, which results in these rents. There is a cutoff ρ̄ > 0 above which the high-payoff,

low-influence type obtains a higher rent. The question of expected influence rents is more

subtle, as there is the additional composition effect: as ρ increases, the influential agents

also become more abundant relative to the non-influential ones (in the slice of high-payoff
agents that receive some rents). As long as γ is not too large, this composition effect

dominates for moderately negative correlation. Although type (1,1) obtains a higher rent,

the relative abundance of (0,1) types means that on average high-influence consumers

have a lower rent. This highlights the interaction of the conditional rent above (which

is positive if correlation is negative) and the shift in relative mass from low- to high-

payoff types (which favors rents for high-influence types if there is positive correlation, at

least initially). The relative strength of these effects is mediated by γ as it scales up the

magnitude of rents: For large γ, expected rents are in line with pointwise rents.

Comparing the results in this section to the previous ones, we see that influence affects

an agent’s utility in our setting only if it is observable and only indirectly: through its impact
on information rents. Other models on the pricing of network goods with observable

influence do find rents as a direct result of influence, by contrast. With a known finite

21Note that Assumption 1 is satisfied trivially in a two payoff-type example and that ρ indeed measures
the covariance as

Cov (k, l) = f11 −
(
f0,1 + f1,1

)(
f1,0 + f1,1

)
= .25 + ρ− (.5)2 = ρ.
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Figure 6: Observable influence in the 2x2 consumption example.

network, this is the result of a stochastic outside option (Bloch and Quérou, 2013) or the

restriction to linear contracts (Candogan et al., 2012). With a similar demand specification

as ours, Fainmesser and Galeotti (2020) find rents for influence when two firms compete

for influential consumers using price discounts.

6 Conclusion

We analyze a screening problem with externalities. Agents have private information about

their payoff-type and their influence on the externality. The principal provides a menu

of actions and transfers, trading off revenues with the direct impact of the externality on

her payoff. Several problems fall into this framework; for example, a monopolist using

nonlinear pricing when there are consumption externalities or a government designing

a tax when there are externalities between firms, positive through external economies

of scale or negative through pollution. Although the problem is two-dimensional at

the surface and contracts are linked “globally” through the externality, we show that

it is nevertheless tractable. Eliciting influence is for free: As long as the payoff-type

is observable, the principal can implement the first best. If both characteristics are

unobservable, we show that the problem can be rendered one-dimensional along the

lexicographic order, with the payoff-type as the dominant dimension. In the full screening

contract, the principal screens along the payoff-type while tilting the allocation along

the influence-type to control the externality. We characterize the solution through a

two-step ironing procedure that addresses the non-monotonicity in virtual values that

arises naturally along the lexicographic order. As all violations of monotonicity originate
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at the highest influence types, every bunching region must include at least one of them. By

offering a given payoff-type the flexibility to sort along a payoff-irrelevant dimension, the

principal is able to increase total surplus (sometimes even the welfare of all agents) and

reap some of those gains. There are rents for high payoff-types, but no rents for influence.

If influence is observable, we obtain a family of one-dimensional screening problems

coupled through the externality. Influence affects utility only if it is observed and even

then only indirectly, through its effect on information rents. Highly influential consumers

obtain higher rents if payoff- and influence-type are not too strongly affiliated.

A Proof Appendix

Proofs for Section 3 (Benchmark Allocations)

Proof of Lemma 1: Consider the Hessian of total surplus.22

H⋆ = dg[f ⊙ (uxx +E[ux +κ′]vxx)] +E[uxx +κ′′] [f ⊙ vx] [f ⊙ vx]T + 2Sym
(
[f ⊙uxx] [f ⊙ vx]T

)
(36)

Let S = dg[
√
f ]. Then H⋆ = SĤ⋆S, where

Ĥ⋆ = dg[(uxx +E[ux +κ′]vxx)] +E[uxx +κ′′]
[√

f ⊙ vx
] [√

f ⊙ vx
]T

+ 2Sym
([√

f ⊙uxx
] [√

f ⊙ vx
]T

)
(37)

Since S is positive definite, the Hessian is negative definite whenever Ĥ⋆ is n.d.. The first two
summands are n.d. since uxx < 0, ux ≥ 0, κ′ ≥ 0 vxx ≤ 0, uxx ≤ 0, and κ′′ ≤ 0. Hence, the only
threat to concavity comes from the two final terms. Note that the two matrices annihilate the
component of any vector outside of span

([√
f ⊙uxx

]
,
[√

f ⊙ vx
])

. To establish concavity it is hence
sufficient to show that the quadratic form defined by H⋆ is negative for unit vectors of the form
x = α

[√
f ⊙uxx

]
+ β

[√
f ⊙ vx

]
.

First, note that
||x|| = α2

E[u2
xx] + β2

E[v2
x ] + 2αβE[uxxvx] (38)

The quadratic form evaluates to

Q(α,β)By(α,β)TĤ⋆y(α,β) (39)

=α2
E[u2

xx (uxx +E[ux +κ′]vxx)] + 2αβE[uxxvx (uxx +E[ux +κ′]vxx)] (40)

+ β2
E[v2

x (uxx +E[ux +κ′]vxx)] +E[uxx +κ′′]
{
α2

E[uxxvx]2 + 2αβE [uxxvx]E
[
v2
x

]
+β2

E

[
v2
x

]2}
+ 2

{
α2

E[u2
xx]E[uxxvx] +αβ

[
E[u2

xx]E[v2
x ] + (E[uxxvx])2

]
+ β2

E[uxxvx]E[v2
x ]
}

and we have concavity if the value of

max
α,β

Q(α,β)

s.t.α2
E[u2

xx] + β2
E[v2

x ] + 2αβE[uxxvx] = 1 (41)

22Recall that dg(a) denotes the diagonal matrix with entries provided by the vector a, Sym(A) = A+AT

2 ,
⊙ denotes element-wise multiplication of vectors and [vx] denotes the column vector with typical element
vx(xk,l , l).
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is negative. The solution to this problem is conceptually simple as we are maximizing a quadratic
form over an elliptic constraint, but analytically cumbersome. We hence restrict attention to our
examples where we can derive meaningful bounds on the parameters.

In the network good example (Section 2.2.2), we have (uxx +E[ux +κ′]vxx) = −1 and E[uxx +
κ′′] = 0. Hence we get

Q(α,β) =−
(
α2

E[u2
xx] + β2

E[v2
x ] + 2αβE[uxxvx]

)
(42)

+ 2
{
α2

E[u2
xx]E[uxxvx] +αβ

[
E[u2

xx]E[v2
x ] + (E[uxxvx])2

]
+ β2

E[uxxvx]E[v2
x ]
}

=− 1 + 2
{
E[uxxvx] +αβ

[
E[u2

xx]E[v2
x ]− (E[uxxvx])2

]}
(43)

by plugging in the constraint. Note that the coefficient of αβ is nonnegative by Cauchy-Schwartz.
Hence, it is sufficient to find maxαβ subject to the constraint. It follows from straightforward
computation that

max
s.t.(41)

αβ =
1

2
(√

E[u2
xx]E[v2

x ] +E[uxxvx]
) (44)

Plugging back and using that E[u2
xx] = γ2

E[k2], E[v2
x ] = E[l2]

E[l]2 , E[uxxvx] = γ
E[kl]
E[l] , after straightfor-

ward manipulation we get

γ <
E[l](√

E[k2]E[l2] +E[kl]
) . (45)

In the pollution case, we have ux = 0 and hence

Q(α,β) =β2
(
E[v2

x (uxx +κ′vxx)] +κ′′E
[
v2
x

]2)
=

1

E[v2
x ]
E[v2

x (uxx +κvxx)] < 0 (46)

which is always satisfied.

Proof of Proposition 1: As the problem is concave, differentiation of the objective – treating x as a
constraint – yields the desired conditions.

For the derivation of the unit price in the network good application, note that solving
u(x⋆k,l , k,x

⋆) = 0 yields

t⋆k,l =
1
2

(
1 + γx⋆k

)2
− 1

2

(
l

E[l]
ζ⋆

)2

=
1
2
x⋆k,l

(
1 + γx⋆k − l

E[l]
ζ⋆

)
. (47)

Proof of Lemma 2: Fix an arbitrary k and suppose the set of contracts
{
xk,l , tk,l

}
l∈L delivers the same

utility u
(
xk,l , k,x

)
−tk,l for all l ∈ L. Clearly, there is no incentive to misrepresent the influence-type.

Necessity is immediate from ICk,l→k,l′ and ICk,l′→k,l :

u(xk,l , k,x)− tk,l ≥ u(xk,l′ , k,x)− tk,l′ ≥ u(xk,l , k,x)− tk,l (48)

Proof of Proposition 2: Consider first the case where the payoff-type is observable, i.e. the relevant
set of constraints are given by

⋃
k∈K (k ×L). Consider the first-best allocation. The participation

constraints are satisfied and the equilibrium utility is independent of l. Hence, by Lemma 2, the
sorting constraints of this problem are satisfied. Clearly, this is the maximal profit the principal
can achieve and hence the first-best allocation is the optimal menu of contracts.
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Second, consider the case where the agent can only over-report his payoff-type and the relevant
set of constraints are π (

⋃
k∈K (k ×L)× (k+ ×L)) where k+ B {k′ ∈ K : k′ ≥ k}. Suppose an agent with

type k, l deviates to k′ , l′ with k′ > k. Since we have full extraction (Uk = 0), the utility under this
deviation is

Uk′ +u(x⋆k′ ,l′ , k,x)−u(x⋆k′ ,l′ , k
′ ,x) = −

∫ k′

k
uk

(
x⋆k′ ,l′ , j,x

)
dj ≤ 0 = Uk (49)

Hence, it is not profitable. Similarly, there is also no incentive to misrepresent only influence.

Lemma 4 ((Existence of a Decentralized Equilibrium)). Let xD(x) solve ux(x,k,x) = 0. A decentralized
equilibrium exists if

−
∑

fk,lvx
uxx
uxx
≤ c < 1 (50)

for all x ∈ X(N) := {xD(x) : |x| ≥ N} for some c ∈R and N ∈R+.

Proof of Lemma 4: Consider D(x) B
∑
fk,lv(xD

k (x), l). The function is continuous and increasing.
Furthermore, dD

dx = −
∑
fk,lvx

uxx
uxx

. Under the condition of the Lemma, D has a fixed point. By

construction, for any fixed point xD of D,
(
xD(xD),xD

)
is a decentralized equilibrium.

Note that in the consumption example, we have

dD
dx

= γE[kl] (51)

and the associated condition γ < 1−E[kl] is tight (see the expression for x̄D in the text).

Proofs for Section 4.1 (Lexicographic Monotonicity)

We first establish the necessary conditions (k−monotonicity and extremal sorting, Lemma 17 and
Proposition 3), as well as some auxiliary lemmas, that are used in the proof of Theorem 1.

Proof of Lemma 17: Consider the constraints ICk,l→k′ ,l′ and ICk′ ,l′→k,l :

u(xk,l , k,x)− tk,l ≥ u(xk′ ,l′ , k,x)− tk′ ,l′ (52)

u(xk′ ,l′ , k
′ ,x)− tk′ ,l′ ≥ u(xk,l , k,x)− tk,l (53)

Taking differences we arrive at

u(xk,l , k,x)−u(xk′ ,l′ , k,x) ≥ u(xk,l , k
′ ,x)−u(xk′ ,l′ , k

′ ,x) (54)

which implies k′ < k ⇐⇒ xk′ ,l′ < xk,l since u has increasing differences in x,k.

Notation. Fix a menu of contracts {(xkl , tk,l)}kl∈K×L and, for each k, pick

lk ∈ argmin
l̃

xk,̃l , lk ∈ argmax
l̃

xk,̃l . (55)

Proof of Proposition 3: Consider the sorting constraint from type k, l to type k′ , l′, where k > k′. It
is implied since

u(xk,l , k,x)− tk,l = Uk ≥ u(xk−1,lk−1 , k,x)− tk−1,lk−1 (56)

= Uk−1 +u(xk−1,lk−1 , k,x)−u(xk−1,lk−1 , k − 1,x) (57)
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≥ · · · ≥ Uk′ +
k∑

j=k′+1

(
u(xj−1,lj−1 , j,x)−u(xj−1,lj−1 , j − 1,x)

)
(58)

≥ Uk′ +
k∑

j=k′+1

(
u(xk′ ,l′ , j,x)−u(xk′ ,l′ , j − 1,x)

)
(59)

≥ u(xk′ ,l′ , k,x)− tk′ ,l′ (60)

where the first inequality is the extremal downward sorting constraint (ES-Bk) and the equalities
follow from condition (H). We apply this argument iteratively and estimate the sum of differences
using that x is k-monotonic and u has increasing differences. An analogous argument leveraging
(ES-Ak) establishes the upward IC. Hence, all IC constraints are implied. The sufficiency of (P)
for all participation constraints follows from the argument above, noting that the LHS of the
penultimate line for k′ = k0 is nonnegative by P and Uk ≥ 0.

Lemma 5. Consider an allocation satisfying the conditions of Proposition 3. If the downward ES-
constraints (ES-Bk) are binding, the upward ES-constraints (ES-Ak) are inactive. Furthermore, in any
second best contract, the downward ES-constraints (ES-Bk) and participation for k0, (P), are binding.

Proof of Lemma: Consider k, l and k′ , l′ with k < k′ . Then

u(xk′ ,l′ , k,x)− tk′ ,l′ = Uk′ +u(xk′ ,l′ , k,x)−u(xk′ ,l′ , k
′ ,x) (61)

= Uk +
k
′∑

j=k+1

(
u(xj−1,lj−1 , j,x)−u(xj−1,lj−1 , j − 1,x)

)
−
(
u(xk′ ,l′ , k

′ ,x)−u(xk′ ,l′ , k,x)
)

≥ Uk +
k
′∑

j=k+1

(
u(xk′ ,l′ , j,x)−u(xk′ ,l′ , j − 1,x)

)
−
(
u(xk′ ,l′ , k

′ ,x)−u(xk′ ,l′ , k,x)
)

= Uk

where the second line follows by expressing Uk′ via the binding downward IC and the inequality
follows by (i) increasing differences and (ii) k-monotonicity as xk′ ,l′ ≥ xj−1,lj−1 for all j ≤ k′ . Hence,
we have the downward IC.

Furthermore, suppose that a downward ES-constraint is strictly slack. We can increase the
transfer from all affected types without implicating any other constraints, which increases the
principal’s objective. The same holds if Uk0

> 0.

Lemma 6. If x,t,x,ζ solves the Lagrangian associated to π (K×L)2, then ζ > 0.

Proof of Lemma. By Lemma 5, the downward ES constraints and P are binding and hence we have
that

Uk = u(max
l

xk−1,l , k,x)− tk−1,argmaxxk−1,l
(62)

= Uk−1 +u(max
l

xk−1,l , k,x)−u(max
l

xk−1,l , k − 1,x) (63)

=
k−1∑
j=k0

u(max
l

xj,l , j + 1,x)−u(max
l

xj,l , j,x) (64)
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Then, we can rewrite the principal’s objective as

∑
fk,l

(
u(xk,l , k,x)−Uk

)
=

∑
fk,l

u(xk,l , k,x)−
k−1∑
j=k0

u(max
l

xj,l , j + 1,x)−u(max
l

xj,l , j,x)

 (65)

Consider the Lagrangian with this objective, k-monotonicity, and the ζ constraint. Then, in a
candidate optimum, we have

0 =
∂L
∂x

=
∑

fk,l

ux(xk,l , k,x)−
k−1∑
j=k0

ux(max
l

xj,l , j + 1,x)−ux(max
l

xj,l , j,x)

− ζ+κ′(x) (66)

ζ =
∑

fk,l

ux(xk,l , k,x)−
k−1∑
j=k0

ux(max
l

xj,l , j + 1,x)−ux(max
l

xj,l , j,x)

+κ′(x) (67)

=
∑

fk,l

ux(xk,l , k,x)−ux(max
l

xk−1,l , k,x)︸                                   ︷︷                                   ︸
≥0 k-mono and uxx≥0

+
k−1∑
j=k0

ux(max
l

xj,l , j,x)−ux(max
l

xj−1,l , j,x)︸                                         ︷︷                                         ︸
≥0 k-mono and uxx≥0

+κ′(x)

> 0

where strictness follows from nontriviality of the allocation and the condition (NT) that either
ux > 0, uxx > 0 for a positive measure of types, or κ′ > 0.

Proof of Theorem 1: Suppose x <M. Then, there exists a k, l′ > l such that xk,l′ < xk,l . Consider

xϵk,l = xk,l − ϵ, tϵk,l = tk,l − ϵux(xk,l , k,x) (68)

xϵk,l′ = xk,l′ + ϵ
fk,l
fk,l′

, tϵk,l′ = tk,l + ϵ
fk,l
fk,l′

ux(xk,l′ , k,x) (69)

To the first order, this change keeps the utility of agents k, l and k, l′ unchanged (for fixed x).
Furthermore, this does not tighten any constraints since the range of xk,· contracts while utilities
are held constant for type k. Furthermore, consider the expected transfers. we have

fk,lt
ϵ
k,l + fk,l′ t

ϵ
k,l′ = fk,ltk,l + fk,l′ tk,l′ + ϵfk,l

(
ux(xk,l′ , k,x)−ux(xk,l , k,x)

)
> fk,ltk,l + fk,l′ tk,l′ (70)

by concavity of u. For x, we get

xϵ = x+ ϵ

(
fk,l
fk,l′

fk,l′vx(xk,l′ , l
′)− fk,lvx(xk,l , l)

)
(71)

= x+ ϵfk,l
(
vx(xk,l′ , l

′)− vx(xk,l , l)
)
> x (72)

and hence the principal, by judicious adjustment of transfers, can obtain an additional payoff
ζϵfk,l

(
vx(xk,l′ , l′)− vx(xk,l , l)

)
. As ζ > 0 (Lemma 6), so is the additional payoff, which contradicts

that the original allocation was optimal.

Proof of Proposition 4: By Lemma 5 and Theorem 1we can write

Uk =
k∑

j=k0+1

(
u(xj−1,L, j,x)−u(xj−1,L, j − 1,x)

)
(73)
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and hence the objective of the principal reads

∑
fk,l

u(xk,l , k,x)−
k∑

j=k0+1

(
u(xj−1,L, j,x)−u(xj−1,L, j − 1,x)

)+κ(x) = (74)

∑
fk,l

[
u(xk,l , k,x)−1l=L

1− Fk
fk,l

(
u(xk,L, k + 1,x)−u(xk,L, k,x)

)]
+κ(x)

where Fk =
∑

j>k
∑

l fk,l . Note that this objective subsumes all participation and sorting constraints,
subject to monotonicity and x, which establishes the proposition.

Lemma 7. The relaxed problem (UP) has a unique solution if the value of the quadratic form defined by
the matrix

ĤFS =diag[(uxx −∆xx + (E[ux]−E[∆x])vxx)] (75)

+ (E[uxx]−E[∆xx])
[√

f vx
] [√

f vx
]T

+ 2Sym
([√

f (uxx −∆xx)
] [√

f vx
]T

)
along span

([√
f ⊙ (uxx −∆xx)

]
,
[√

f ⊙ vx
])

is strictly bounded above by 0, where

∆xx := 1l=L
(1−Fk )
fl,k

∫ k+1
k

ukxxds ∈R|K×L|, ∆x := 1l=L

(
1−Fk
fk,l

)∫ k+1
k

ukxds, ∆xx := 1l=L

(
1−Fk
fk,l

)∫ k+1
k

ukxxds and

∆xx := 1l=L
(1−Fk )
fl,k

∫ k+1
k

ukxxds ∈R|K×L|.

Proof of Lemma: Using the same approach as for the first best above, the Hessian of the principals
objective in where we have substituted for x is given byHFS = SĤFSS . Note that we have ukxx ≥ 0
and ukxx ≥ 0. Therefore E[∆xx] ≥ 0. Furthermore E[ux]−E[∆x] > 0 is implied by our conditions
and lexicographic monotonicity: We have by (74) and the proof of Lemma 6

E[ux]−E[∆x] =
∑

fk,l

[
ux(xk,l , k,x)−1l=L

1− Fk
fk,l

(
ux(xk,L, k + 1,x)−ux(xk,L, k,x)

)]
(76)

=
∑

fk,l

ux(xk,l , k,x)−
k∑

j=k0+1

(
ux(xj−1,L, j,x)−ux(xj−1,L, j − 1,x)

) = ζ−κ′(x) ≥ 0

Hence, the first two matrices are negative semi-definite. As in the first-best, we can restrict
attention to the subspace span

([√
f ⊙ (uxx −∆xx)

]
,
[√

f ⊙ vx
])

as the terminal matrix annihilates all

others. Let y(α,β) = α
[√

f ⊙ (uxx −∆xx)
]
+ β

[√
f ⊙ vx

]
. We have concavity if the value of

max
α,β

y(α,β)TĤFSy(α,β) (77)

s.t.α2
E[(uxx −∆xx)2] + β2

E[v2
x ] + 2αβE[(uxx −∆xx)vx] = 1

is negative (for all x).
In the linear case, we can proceed similar to the first-best

ĤFS = −I + 2Sym

[√f ⊙
(
γk −1l=Lγ

(1− Fk)
fl,k

)][√
f ⊙ l

E[l]

]T (78)

so that the quadratic form evaluates to

−1 + 2E
[(
γk −1l=Lγ

(1− Fk)
fl,k

)
l

E [l]

]α2
E

(γk −1l=Lγ
(1− Fk)
fl,k

)2+ β2
E

( l
E [l]

)2 (79)
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+ 2αβ

E
(γk −1l=Lγ

(1− Fk)
fl,k

)2E( l
E [l]

)2+E

[(
γk −1l=Lγ

(1− Fk)
fl,k

)
l

E [l]

]2
 (80)

Using the constraint and simplifying, we arrive at

y(α,β)TĤFSy(α,β) =− 1 + 2E
[(
γk −1l=Lγ

(1− Fk)
fl,k

)
l

E [l]

]
+ (81)

+ 2αβ


E

(γk −1l=Lγ
(1− Fk)
fl,k

)2E( l
E [l]

)2−E[(
γk −1l=Lγ

(1− Fk)
fl,k

)
l

E [l]

]2

︸                                                                                        ︷︷                                                                                        ︸
≥ 0 by Cauchy-Schwarz


Maximizing, we get

max
α,β:||y||=1

αβ =
1

2

√
E[

(
γk −1l=Lγ

(1−Fk )
fl,k

)2
]E

[(
l

E[l]

)2
]

+ 2E
[(
γk −1l=Lγ

(1−Fk )
fl,k

)
l

E[l]

] (82)

which implies the bound√
E

(γk −1l=Lγ
(1− Fk)
fl,k

)2E( l
E [l]

)2+E

[(
γk −1l=Lγ

(1− Fk)
fl,k

)
l

E [l]

]
< 1 (83)

Simplifying by using

E

(
k ·1l=L

(1− Fk)
fL,k

)
=

∑
k

k · (1− Fk) =
1
2

[
E

[
k2

]
−E [k]

]
(84)

and

E

[(
γk −1l=Lγ

(1− Fk)
fl,k

)
l

E [l]

]
=

γ

E [l]

[
E [kl]−E

[(
1l=L

(1− Fk)
fl,k

)
l

]]
(85)

=
γ

E [l]

E [kl]− L
∑
k

(1− Fk)

 =
γ

E [l]
[E [kl]− L(E [k]− k0)] (86)

we arrive at equation 19 in the text.

γ <
E [l]√[∑

k
(1−Fk )2

fk,L
+E [k]

]
E

[
(l)2

]
+ [E [kl]− L(E [k]− k0)]

(87)

Proofs for Sections 4.2 and 4.3 (Ironing Procedure and Bunching Regions)

Lemma 8. The virtual value J is concave in x for all x,ζ > 0.

Proof of Lemma: By direct computation, we have

∂2

∂x2 J = uxx −1l=L

{
1− Fk
fkl

[uxx (x,k + 1,x)−uxx (x,k,x)]
}

+ ζvxx < 0 (88)
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since uxx < 0, vxx ≤ 0 and uxxk ≥ 0.

Proof of Theorem 2: Let xT,ζT be a fixed point of Γ and let xT = y(xT,ζT) denote the ironed
allocation conditional on xT,ζT, defined in (23). Then, since xT solves maxx∈ML(x,xT,ζT) and this
problem is concave-convex (since the objective is concave by Lemma 8 and M is convex), we have
∇xL(xT,xT,ζT) ∈ NM(xT) where NM(x) denotes the outward normal cone to M at x.23

Consider now the problem where we express x̄ =
∑
fk,lv(xk,l , l) and denote this objective by L̂.

By assumption, this is a concave-convex problem and therefore a vector x solves this problem if
and only if ∇xL̂(x) ∈ NM(x). We have

∇xL̂(xT) = f ⊙
(
∇x

(
u(xT,xT) +∆(xT,xT)

)
+E[ux(xT,xT) +∆x(xT,xT) +κ′(x)]∇xv(xT,xT)

)
(89)

= f ⊙
(
∇x

(
u(xT,xT) +∆(xT,xT)

)
+ ζT∇xv(xT,xT)

)
(90)

= ∇xL(xT,xT,ζT) ∈ NM(xT) (91)

Hence, the solution to the fixed point problem induces a solution to this problem. By uniqueness
of this solution (Lemma 7), it is unique.

Conversely, let xFS be the solution to ∇xL̂(xFS) ∈ NM(xFS) and xFS =
∑
fk,lv(xFS

k,l , l) and

ζFS =
∑

fk,l

(
ux(xFS

k,l , k,x
FS)−1l=L

1− Fk
fkl

∫ k+1

k
ukx

(
xFS
k,l , j,x

FS
)

dj
)

+κ′(xFS) (92)

Then, following the above chain of equalities backwards it is easy to see that ∇xL(xFS,xFS,ζFS) ∈
NM(xFS). Hence, y(xFS,ζFS) = xFS and Γ (xFS,ζFS) = (xFS,ζFS) by construction.

Proof of Proposition 5: We establish the properties of the bunching regions for a given value of
the aggregate variables (x̄,ζ). By virtue of Theorem 2, those properties carry over to the general
solution xFS.

Since we have a finite type space, H(x,q) is piece-wise linear in q. Therefore, the convexification
induces a partition of q which is a coarsening of the partition induced by the map q(k, l). Therefore,
we obtain an induced partition of types, which we denote by B in both spaces by abuse of notation.
For q ∈ B, we have

Gq(x,q) =
∫
r∈B

Hq(x,r)dr =
∫
r∈B

Jx(x,k(r), l(r),x,ζ)dr (93)

Since the maximization of J̄ is pointwise, we can impose the non-negativity constraint pointwise as
well. Since xk,l is constant on B, at an interior solution it solves

0 =
1
|B|

∑
k,l∈B

J (x,k, l,x,ζ) =
1
|B|

∑
k,l∈B

Gq (x,q (k, l)) =
∫
r∈B

Jx(x,k(r), l(r),x,ζ)dr (94)

=
∑
k,l∈B

fk,l

[
ux

(
xk,l , k,x

)
−1l=L

{
1− Fk
fkl

[
ux

(
xk,l , k + 1,x

)
−ux

(
xk,L, k,x

)]}
+ ζvx

(
xk,l , l

)]

By Toikka (2011), the solution to the FOC solves the monotonicity constrained problem. This
proves the partition structure of the second-best. Let kB = min{k : (k, l) ∈ B} and kB = max{k : (k, l) ∈
B} denote the lowest and highest payoff-type in cell B. With further algebraic steps we get that the

23Formally, z ∈ NM(x) if < z,m− x >≤ 0 for all m ∈M.
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allocation within each cell B is must solve

1∑
k,l∈B fk,l

∑
k,l∈B

fk,l

{
ux

(
xk,l , k,x

)
−1l=L

{
1− Fk
fkl

[
ux

(
xk,l , k + 1,x

)
−ux

(
xk,L, k,x

)]}}
= (95)

ux (xB, kB,x) +
1∑

k,l∈B fk,l


∑

k,l∈B fk,l
[
ux

(
xk,l , k,x

)
−ux (xB, kB,x)

]
−
∑

k,L∈B (1− Fk)
[
ux

(
xk,l , k + 1,x

)
−ux

(
xk,L, k,x

)]  =

ux (kB,xB,x) +
1∑

k,l∈B fk,l


∑

k,l∈B:k,l≻kB,L fk,l
[
ux

(
xk,l , k,x

)
−ux (xB, kB,x)

]
−
∑

k,l≻kB,L fk,l
[
ux

(
xk,l , kB + 1,x

)
−ux

(
xk,L, kB,x

)]
−
∑

k,L∈B\{kB,L} (1− Fk)
[
ux

(
xk,l , k + 1,x

)
−ux

(
xk,L, k,x

)]
 =

ux (kB,xB,x) +
1∑

k,l∈B fk,l


∑

k,l∈B:k,l≻kB+1,L fk,l
[
ux

(
xk,l , k,x

)
−ux (xB, kB + 1,x)

]
−
∑

k,L∈B\{kB,L} (1− Fk)
[
ux

(
xk,l , k + 1,x

)
−ux

(
xk,L, k,x

)]  =
(induction)

ux (kB,xB,x)−
∑

k,l≻B fk,l∑
k,l∈B fk,l

[
ux

(
kB + 1,xB,x

)
−ux

(
kB,xB,x

)]
= 0

which in the context of the sale of network good can be rearranged to obtain equation (31). As for
the general properties of the bunching regions, we have

Property 1: By single crossing, Jx(x,K,L,x,ζ) dominates all other types and hence there is no
bunching and no distortion (in the weak sense) at the top.

Property 2: Consider a nontrivial cell that does not contain a type k,L. Then, this cell is
contained in one k ×L slice. Within such a slice, except at the switching type, however,

Jx = ux
(
xk,l , k,x

)
+ ζvx

(
xk,l , l

)
(96)

is increasing in l and decreasing in x, so no ironing is required, a contradiction.
Property 3: Notice that ux(x,k,x) < 0 ⇐⇒ x > xD

k (x). Suppose towards a contradiction that
xD
k (x) ≥ xk,l > xk,l−1. Then, we know that the lexicographic-monotonicity constraint is slack at

xk,l−1 and hence
∂L

∂xk,l−1
= fk,l−1Jx(xk,l−1, k, l − 1,x,ζ) > 0 (97)

since x̂k,l−1 > xD
k (x). This contradicts the optimality of xk,l−1 given x,ζ.

Proofs for Section 5 (Observable Influence)

Proof of Proposition 6: We can rewrite the problem in utility space, noting that uk,l = (1 + γxk)xk,l −
1
2x

2
k,l − tk,l or equivalently tk,l = (1 + γxk)xk,l − 1

2x
2
k,l −uk,l . Then, (P) is equivalent to uk0,l = 0 where

equality follows from by the usual argument. IC is equivalent to uk,l ≥ uk′ ,l + γx (k − k′)xk′ ,l . Again,
by the usual arguments, local downward IC and monotonicity are sufficient and IC are binding,
hence uk,l = γx

∑k−1
j=k0

xj,l . Plugging this into the objective and applying summation by parts to the
double sum, we arrive at the Proposition.

Proof of Proposition 7: Note that ζ = γ
∑
fk,l

(
k − Fl (K)−Fl (k)

fkl

)
xk,l(ζ,x). Solving further yields

x =
∑

fk,l
l

E[l]

(
1 + γx

(
k − Fl(K)− Fl(k)

fkl

)
+

l
E[l]

ζ

)
(98)

= 1 + γx
E[kl]
E[l]

− γxE[kl − k0l]
E[l]

+ ζ
E[l2]
E[l]2 (99)
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= 1 + γxk0 + ζ
E[l2]
E[l]2 (100)

where we use that
∑

k,l l (Fl(K)− Fl(k)) = E[kl − k0l].

ζ = γ
∑

fk,l

(
k − Fl(K)− Fl(k)

fkl

)(
1 + γx

(
k − Fl(K)− Fl(k)

fkl

)
+

l
E[l]

ζ

)
(101)

= γ

k0 + γk0ζ+ γx

E [k]− k2
0 − 2k0 +E[

(
Fl(K)− Fl(k)

fkl

)2

]

 (102)

where we used24

∑
fk,l

(
k − Fl(K)− Fl(k)

fkl

)2

= E[k2]− 2
∑

k (Fl(K)− Fl(k)) +E[
(

Fl(K)− Fl(k)
fkl

)2

] (106)

= E [k]− k2
0 − 2k0 +E[

(
Fl(K)− Fl(k)

fkl

)2

]

Solving the system defined by (100) and (102) further, we obtain

ζ

γx
= Ξ =

k0 + γ

(
E[k]− 2k0 (1 + k0) +E

[( Fl (K)−Fl (k)
fkl

)2])
1−

(
1− E[l2]

E[l]2

)
γk0

(107)

Therefore, x·,l is increasing in l if

l
E[l]

ζ− γx
Fl

K − Fl
k

fkl
∝ l

E[l]
Ξ− Fl(K)− Fl(k)

fkl
=

l
E[l]

Ξ− 1− F(k|l)
f (k|l)

(108)

is increasing in l. Furthermore, rents are simply γx
∑k−1

j=0 xj,l , so the fact that x·,l is increasing in l is
sufficient for this to hold. A necessary condition has all cumulative sums increasing. Whenever
l1 > l2 for every k,

k∑
j=k0

(
l1
E[l]

Ξ−
1− F(j |l1)
f (j |l1)

)
>

k∑
j=k0

(
l2
E[l]

Ξ−
1− F(j |l2)
f (j |l2)

)
(109)

= k
l1 − l2
E[l]

Ξ+
k∑

j=k0

1− F(j |l2)
f (j |l2)

−
1− F(j |l1)
f (j |l1)

In particular, if k0 = 0, we have Ξ = γ

(
E[k] +E[

( Fl (K)−Fl (k)
fkl

)2
]
)
.

24Solving further, ∑
k

(k − k0) · (1− Fk) =
1
2

[
E

[
(k − k0)2

]
−E [k − k0]

]
(103)

∑
k

k · (1− Fk) =
1
2

[
E

[
k2

]
−E [k]

]
+

1
2
k2

0 + k0 (104)

and ∑
k (Fl (K)− Fl (k)) =

1
2

[
E

[
k2

]
−E [k]

]
+

1
2
k2

0 + k0. (105)
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For expected rents from influence, we require instead that

∑
k

f (k|l)
(

l
E[l]

Ξ− 1− F(k|l)
f (k|l)

)
=

l
E[l]

Ξ−E[k − k0|l] (110)

is increasing in l.

B Examples

B.1 Network Good: Decentralized vs Efficient

For the decentralized case, note that xk = 1 + γxDk and hence

xD =
1

1− γ E[kl]
E[l]

. (111)

For the first best, plugging x⋆k,l into the definition of x⋆ and ζ⋆ , we arrive at

ζ⋆ =
∑
k,l

fklγk

(
1 + γx⋆k +

l
E[l]

ζ⋆
)

= γE[k] + γ2
E[k2]x⋆ + ζ⋆γ

E[kl]
E[l]

(112)

x⋆ =
∑
k,l

fkl
l

E[l]

(
1 + γx⋆k +

l
E[l]

ζ⋆
)

= 1 + γx⋆
E[kl]
E[l]

+ ζ⋆
E[l2]
E[l]2 (113)

Solving this 2x2 linear system gives

x⋆ =

1 + E[l2]

E[l]2
[
1−γ E[kl]

E[l]

]γE[k]

1− γ E[kl]
E[l] −

γ2
E[l2]E[k2]

E[l]2
[
1−γ E[kl]

E[l]

] . (114)

where (11) ensures that the denominator is positive.

B.2 Network Good: Efficient vs Full Screening

To see that xFS < x⋆ when the solution involves no ironing, consider

xFS =
∑

fk,l
l

E[l]
xk,l (115)

= 1 + γxFS
(
E [kl]
E[l]

−
∑

fk,l
l

E[l]
1l=L

1− Fk
fkl

)
+ ζFS

E

[
l2
]

E [l]

≤ 1 + γxFS E[kl]
E[l]

+ ζFS E[l2]
E[l]2

and

ζFS =
∑

fk,l

(
γkxk,l −1l=L

1− Fk
fkl

γxk,l

)
(116)

≤
∑

fk,lγkxk,l = γE[k] + γ2
E[k2]xFS + ζFSγ

E[kl]
E[l]

(117)
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Recall that x⋆ ,ζ⋆ solve this system with equality. Hence, we can write xFS = x⋆ + ϵx, ζFS = ζ⋆ + ϵζ

where  ϵx

ϵζ

 ≤
 γ

E[kl]
E[l]

E[l2]
E[l]2

γ2
E[k2] γ

E[kl]
E[l]


 ϵx

ϵζ

 (118)

Suppose ϵx > 0, indeed, let WLOG ϵx = 1. Then, we have 1− γ E[kl]
E[l] −

E[l2]
E[l]2 ϵζ(

1− γ E[kl]
E[l]

)
ϵζ − γ2

E[k2]

 ≤0 (119)

Hence, ϵζ ≥
(
1−γ E[kl]

E[l]

)
E[l2]
E[l]2

and therefore

(
1− γE[kl]

E[l]

)
ϵζ − γ2

E[k2] ≥

(
1− γ E[kl]

E[l]

)2

E[l2]
E[l]2

− γ2
E[k2] ∝ 1− γE[kl]

E[l]
−

γ2
E[k2]E[l2](

1− γ E[kl]
E[l]

)
E[l]2

> 0 (120)

a contradiction. Therefore, ϵx < 0 and we have xFS < x⋆ .

B.3 Network Good: 2x2

Consider the setting of Section (2.2.2) with K = L = {0,1}.

B.3.1 Benchmark Allocations

The decentralized solution has

xD
0 = 1, xD

1 = 1 + γx (121)

with

x =
f0,1 + f1,1 (1 + γx)

f0,1 + f1,1
=⇒ x =

f0,1 + f1,1(
f0,1 + f1,1 (1− γ)

) (122)

A decentralized equilibrium exists for every γ < 1 + f0,1
f1,1

.
Computing the efficient allocation is straightforward but yields unwieldy expressions. How-

ever, it holds

x⋆0,1 − x
⋆
1,0 =

γ
(
f1,0 − f0,1

)
1− f0,0 − (1− γ)f1,0

(123)

Therefore, the first best is implementable if and only if f0,1 ≥ f1,0.

B.3.2 Full Screening

We fully solve for the optimal screening contract in a Mathematica notebook, available upon
request. There, we go through all possible bunching scenarios. Only the following scenarios 1, 2,
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and 5 are possibly optimal.25

0 < x0,0 < x0,1 < x1,0 < x1,1 (SC1)

0 < x0,0 = x0,1 < x1,0 < x1,1 (SC2)

0 = x0,0 = x0,1 < x1,0 < x1,1 (SC5)

It can be shown that the first order solution x̂ is ≻L+-monotonic if and only if γ > 1.26

B.3.3 Observable Influence

We have

xOI
0,0 = 1−

f1,0

f0,0
γx, xOI

0,1 = 1−
f1,1

f0,1
γx+ ζ

1
f0,1 + f1,1

(125)

xOI
1,0 = 1 + γx, xOI

1,1 = 1 + γx+ ζ
1

f0,1 + f1,1
(126)

The aggregate variables are

ζOI = γ
∑

fk,l

(
k − Fl (K)− Fl (k)

fkl

)
xOI
k,l (127)

= γxOIγ

f1,0 + f1,1 + f0,0

(
f1,0

f0,0

)2

+ f0,1

(
f1,1

f0,1

)2 = γxOIΞ (128)

xOI = 1 + ζOI 1
f0,1 + f1,1

(129)

which we solve for, yielding

xOI =
1

1− γΞ 1
f0,1+f1,1

, ζOI =
γΞ

1− γΞ 1
f0,1+f1,1

> 0. (130)

By direct substitution of fi,j = 1
4 + (−1)1i,j ρ, we see that there are rents from influence if

xOI
0,0 < xOI

0,1 which is the case if γ−8ρ+16γρ2 < 0 or, equivalently for ρ ∈ [−.25, .25], if ρ < ρ̄ =
1−
√

1−γ2

4γ .

25The fact that we always have x0,1 < x1,0 < x1,1 – in other words that only the information rent distortion
induces bunching – is a consequence of the result that ζ · L is proportional to γx. In a more generic
parameterization, a different pattern emerges when L− l0 is large.

Because of this bunching structure, the value of x1 characterizes the bunching structure: If x1 = 1 we are in
strictly monotonic allocation, else the k = 0 slice is bunched (sometimes with the 0 bound binding).

26Clearly, strict concavity of the first-best problem implies existence of the second best solution. The
second-best can exist even if the first-best does not but we have

γ <
f0,1

f0,1f1,0 −
√

(1− f0,0)f0,1(1− f0,0 − f1,0)(1− f0,0 − f0,1)
(124)

In particular, this is the case when x⋆0,1 diverges: The resulting divergence of information rents can reign in
the second best value. We use this region to demonstrate that consumer surplus in the screening solution can
exceed the decentralized surplus.
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B.4 Pollution 2× 2

B.4.1 Benchmark Allocations

Since the aggregate externality does not affect firms’ profits, we have xD
0 = 1,xD

1 = 2. The equations
characterizing the first best are given by

0 = 1−
xk,l
k + 1

− xk,l (1− l)ζ⋆(x) (131)

where

0 =
∑

fk,lux
(
x⋆k,l , k,x

)
+κ′(x)− ζ⋆(x). (132)

implies κ = ζ⋆(x) and by definition x⋆ = −1
2

[
f0,0x

2
0,0 + f1,0x

2
1,0

]
. Plugging those conditions in the

FOC delivers x⋆ =
[

1
1+κ ,1,

1
1
2 +κ

,2
]
.

B.4.2 Full Screening

The full screening problem reads

max
x∈M

f0,0

[
x0,0 −

1
2

[1 +κ]x2
0,0

]
+ f0,1

[
x0,1 −

1
2
x2

0,1 −
{

1− f0,0 − f0,1

f0,1

[1
4
x2

0,1

]}]
+ (133)

+ f1,0

[
x1,0 −

1
2

[1
2

+κ

]
x2

1,0

]
+ f1,1

[
x1,1 −

1
4
x2

1,1

]
(134)

The first order solution is given by x̂ =
[

1
1+κ ,

2f0,1
1−f0,0+f0,1

, 1
1
2 +κ

,2
]
. x̂ ∈M if and only if

1
1 +κ

<
2f0,1

1− f0,0 + f0,1
<

1
1
2 +κ

(135)

which can be rearranged to deliver the conditions on κ given in the text.
Now suppose x̂0,1 = 1 < 1

1+κ = x̂0,0 so the low-productivity sectors have to be bunched at level
x0,0 = x0,1 = x0. We know that x1,· = x̂1,· from Proposition 5. Dropping constant terms, the objective
reads

f0,0

(
x0 −

1
2

(1 +κ)x2
0

)
+ f0,1

(
x0 −

1
2
x2

0 −
1− f0,0 − f0,1

4f0,1
x2

0

)
(136)

that delivers

x0 =
f0,0 + f0,1

κf0,0 + 1
2
(
1 + f0,0 + f0,1

) , x1,· = x̂1,· (137)

Finally suppose x̂0,1 = 1 > 1
1
2 +κ

= x̂1,0 so the low-productivity green sector has to be bunched

with the high-productivity dirty sector at level x0,1 = x1,0 = xB that maximizes

f0,1

(
xB −

1
2
x2

B −
1− f0,0 − f0,1

4f0,1
x2

B

)
+ f1,0

(
xB −

1
2

(1
2

+κ

)
x2

B

)
(138)

that delivers

xB =
f0,1 + f1,0

1
2
(
1− f0,0 + f0,1 + f1,0

)
+ f1,0κ

(139)
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B.4.3 Observable Influence

Notice that in this case we are effectively solving two independent screening problems since the
coupling through x is missing as it does not enter utility. For l = 1 (green sector) we have a standard
screening contract with two types that we omit, while for l = 0 we have a screening with externality
with objective

max
x0,0,x0,1

f0,0

(
x0,0 −

1
2
x2

0,0

)
+ f1,0

(
x1,0 −

1
4
x2

1,0 −
1
4
x2

0,0

)
−κ1

2

(
f0,0x

2
0,0 + f1,0x

2
1,0

)
first order conditions deliver

f1,0

(
1−

(1
2

+κ

)
x1,0

)
= 0 =⇒ x1,0 =

1
1
2 +κ

= x⋆1,0

2f0,0

f1,0 + 2f0,0 (1 +κ)
= x0,0

and

x = −1
2

f0,0

(
2f0,0

f1,0 + 2f0,0 (1 +κ)

)2

+ f1,0

 1
1
2 +κ

2 > x⋆

there is suboptimally low pollution since the (0,1) agent produces its efficient level while the (0,0)
agent is downward distorted.27
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