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Abstract

We study a decision-framing design problem: a principal faces an agent with frame-dependent
preferences and designs an extensive form with a frame at each stage. This allows the principal
to circumvent incentive compatibility constraints by inducing dynamically inconsistent choices of
the sophisticated agent. We show that a vector of contracts can be implemented if and only if it
can be implemented using a canonical extensive form, which has a simple high-low-high structure
using only three stages and the two highest frames, and employs unchosen decoy contracts to deter
deviations.

We then turn to the study of optimal contracts in the context of the classic monopolistic
screening problem and establish the existence of a canonical optimal mechanism, even though our
implementability result does not directly apply. In the presence of naive types, the principal can
perfectly screen by cognitive type and extract full surplus from naifs.
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1 Introduction

Ample evidence, casual empiricism and introspection suggest that framing e�ects are common in choice.
For example, decision makers tend to be risk averse in decisions framed as gains and risk seeking for
losses (Tversky and Kahneman, 1981) and overestimate the impact of certain product attributes that are
salient (Schkade and Kahneman, 1998).1 In particular, the way a product is presented and the setting
of the sales interaction—e.g., how the price is displayed and how much attention is focused on quality
attributes of the product—can have a strong impact on consumer valuations.2 Concordantly, many
�rms go to great expenses to improve the presentation of their product in largely non-informative and
payo�-irrelevant ways through packaging, in-store design, and the emotions invoked by the sales pitch.

When preferences are a�ected by framing, a change of framing causes a change in preferences. Many
economic interactions unfold in several stages admitting such changes. For example, when buying a car,
a consumer is �rst exposed to a manufacturer’s marketing material, contemplates his purchase decision
at home, and is then a�ected by the way the product is presented by the dealer. Court trials involve
plea-bargaining under the threat of higher charges potentially followed by court proceedings which
may raise the defendant’s hopes. Even a sales pitch itself unfolds sequentially. As a result, an agent’s
choices in such interactions with changing frames will display dynamic inconsistency. For instance, an
alternative that is attractive under sales pressure may very well appear excessive when considered from
the calm of one’s home, prompting the agent to avoid the sales person entirely.

In many cases, the framing at di�erent stages of the decision process and the resulting pattern of
dynamic inconsistency is designed. In the examples above, this can be done by marketing teams, the legal
system, and the sales person, respectively. In this paper, we initiate the study of such decision-framing
design: the structuring and framing of a decision problem to steer the choices of an agent with state-
or frame-dependent preferences. We focus on a stylized single-agent setting in which the designer
can commit and fully determine the sequence of frames and the contracts encountered by the agent.
We characterize the implementable outcomes and apply our results to monopolistic screening. How
does the designer use the power to a�ect tastes—only to more closely align the agent’s tastes with
her own or also to circumvent the incentive compatibility constraints usually implied by the agent’s
private information? Does this high level of in�uence granted to the designer imply that anything
goes? What about the optimal pattern of frames? Does the designer—endowed with the opportunity
to a�ect an agent’s taste over an arbitrarily long and complex sequence of frames—require long and
intricate patterns to eke out an advantage, or is there a simple canonical structure that carries all power
of implementation?

We investigate these questions by adding framing and extensive forms to a principal-agent problem
in a single-crossing quasi-linear environment. The principal chooses not only the contracts, but also
the structure of an extensive form along with a frame at each decision node. We assume that the
agent is sophisticated, i.e. he correctly anticipates future choices, but chooses according to his current

1Also see the evidence discussed in Bordalo et al. (2013) and Kőszegi and Szeidl (2013), who provide models of consumer
choice in which the properties of the choice set determine the attention on certain attributes.

2Consumer decisions are a�ected by the framing of insurance coverage (Johnson et al., 1993), the description of a surcharge
(Hardisty et al., 2010), whether discounts are presented in relative or absolute terms (DelVecchio et al., 2007), prices as totals or
on a per-diem basis (Gourville, 1998), and by background music (Areni and Kim, 1993; North et al., 1997, 2003, 2016). Large
e�ects of framing on consumer valuation are also found in incentivized lab experiments and across policy discontinuities
(Bushong et al., 2010; Schmitz and Ziebarth, 2017).
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frame. By varying the frames, the mechanism can therefore create and exploit dynamic inconsistency.
To illustrate how this allows the principal to bypass incentive compatibility constraints, consider to
following example.

Example 1. There are two types, θ 1 (low) and θ 2 (high), and two frames, l (low) andh (high). Preferences
of type θ i in frame f ∈ {l ,h} are represented byuif (p,q) = θ

i
f q−p, where the marginal utility θ if depends

both on the type and the current frame (see Fig. 1a).
Consider the contracts c1 = (9, 3) and c2 = (36, 6) for types θ 1

l and θ 2
h , respectively. In particular,

they correspond to the e�cient full-extraction allocation that would arise if a principal with production
cost 1

2q
2 observed the types and was required to sell to the low type in the low frame and to the high

type in the high frame. Clearly, this allocation is not incentive compatible for the high type in any �xed
frame. It is however implementable in an extensive form that uses changes in framing: h → l → h.

Figure 1: Example 1

(a) Payo� types.

frame

l h

type
θ 1 3 4
θ 2 5 6

(b) The optimal extensive-form decision problem implementing c1, c2.

h

l

h

c1 = (9, 3) d2 = (45, 9) (0, 0)

(0, 0)

c2 = (36, 6) (0, 0)

(anticipated) choices
θ 1

θ 2

To see how the principal achieves this, consider the extensive form in Fig. 1b. It is easy to check
that the low type prefers c1 to any other contract in the extensive form in both frames and therefore
proceeds through the tree to c1. What about the high type? Because c1 is preferable to c2 for him in
both frames, we need to show that such a deviation is infeasible in this extensive form. To deviate to c1,
at the root the high type needs to choose the continuation problem leading to this contract. As he is
sophisticated, he correctly anticipates his future choices but cannot commit. That is, at the second stage
he anticipates that at the �nal stage he would pick the decoy d2 (in the high frame). But according to his
taste at the second stage (in the low frame), the decoy is unappealing, so he would choose the outside
option. Hence, at the root the choice of the continuation problem is e�ectively equivalent to the outside
option, thus, making the deviation to c1 impossible.

By placing a decoy contract as a “tempting poison pill” in the extensive form, the mechanism
e�ectively removes the incentive compatibility constraint. This comes at the cost of adding an additional
participation constraint, namely for the low type in the low frame, who has to pass through this frame
on the path to his contract. N

Generalizing the construction in the example, we identify a canonical extensive-form mechanism:
For any �nite number of types and frames, an allocation can be implemented if and only if it can be
implemented in three stages using two frames (Theorem 1), provided that there is a su�ciently large set
of feasible outcomes. Such canonical extensive forms have the following key features:
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1. Short Interaction. All types make at most three choices, and some only one.
2. Fixed order of frames: high–low–high. First, the agent is presented with a range of choices under

the highest valuation frame. Some contracts are available immediately, some require a change of
framing (to the second highest valuation frame) until a �nal decision is made back in the highest
frame. The latter two stages involve a range of decoy contracts designed to throw o� agents that
misrepresented their type initially.

3. Gains from Framing: IR vs. IC. The designer can either “reveal” (contract available at the root)
or “conceal” (contract available in a continuation problem) each type. Therefore, she faces a
trade-o� between relaxing individual rationality by using only the highest frame (revealed types)
and discouraging deviations by using frames in a high-low-high pattern to induce dynamic
inconsistency (concealed types).

This �nal feature implies a direct characterization of implementability. For any vector of outcomes,
there exist transfers such that it is implementable. In particular, outcomes do not have to satisfy the
usual monotonicity requirement. Fixing transfers, a vector of contracts is implementable if and only if it
satis�es a set of constraints. First, every contract needs to satisfy the participation constraint in the
highest frame. Second, for every type one of two constraints has to be satis�ed: either the participation
constraint in the second highest frame, or that no other type—in the highest frame—is willing to imitate
him.

Taking this single-agent multiple-self mechanism-design perspective contrasts with the growing
literature analyzing the impact of dynamic inconsistency in contracting when the pattern of taste
changes is given by the agent’s preferences (e.g. temptation or present bias): In our setting the pattern
of inconsistency is chosen by the designer. We can hence analyze which patterns give the designer the
most implementation possibilities and show that a simple pattern of taste changes (high–low–high) is
su�cient.

We apply our results to the classic screening problem in Section 4. The principal designs a sales
interaction to screen buyers by their taste for the product. Does she always present the product in
the most favorable light or can changes of framing allow her to extract more surplus? While many
factors in�uence the design of sales interactions, our application highlights the potential impact of
decision-framing design. From a technical point of view, the space of feasible contracts in this application
has a natural lower bound as the monopolist can only sell nonnegative quantities. Therefore, the space
of outcomes is not su�ciently large to implement every vector of contracts in a canonical mechanism.
We show that despite this restriction, the optimal allocation is implemented by a canonical extensive
form (Theorem 2). To illustrate, consider again example Example 1.

Example 1 (cont.). Let us assume that the two types are equally likely and that costs are 1
2q

2. If the
principal o�ers a menu, this is a classic screening problem with an additional choice of a frame. It is easy
to see that it is optimal to pick the high frame h and o�er contracts so that θ 1

h ’s participation constraint
and θ 2

h ’s incentive compatibility constraint bind, which yields a pro�t of 20.3

The principal can do better. Using a canonical extensive form to circumvent the downward incentive
compatibility constraint, the principal arrives at the mechanism described in Fig. 1b. The high type
doesn’t obtain any information rent as the low type is concealed. Note that the decoy that achieves this

3In particular, the optimal contracts are (p1,q1) = (8, 2) and (p2,q2) = (32, 6). Note that with these functional forms,
qi = θ if is e�cient for frame f and the quality of type 2 is distorted downward compared to the e�cient quality for both
frames.

3



has a nonnegative quantity and is hence feasible. The maximal surplus that can be extracted from the
low type is lower than in the static menu. There is a trade-o� between concealing the contract intended
for the low type in the continuation problem and thereby eliminating information rents and extracting
surplus from this type. In the present case, this reduction in total surplus is worth it for the principal,
she obtains a pro�t of 22.5 > 20. N

In general, the pro�t-maximization problem is an optimization over the set of all extensive-form
decision problems. Based on the structure of the optimal extensive form established in Theorem 2,
we identify an equivalent optimization problem in contract space. The principal partitions the set of
types into revealed and concealed. This partition determines the participation and incentive constraints:
Concealing a type rules out the possibility of other types imitating it at the cost of a tighter participation
constraint. In contrast to the classic setting, it is never optimal to exclude any type, as it is strictly better
to sell a strictly positive quality to every type and conceal some of them instead (Proposition 3).4

For the main sections, we assume that agents are sophisticated. They correctly anticipate their
choices, but cannot commit to a course of action.5 As the optimal sales interaction has a simple 3-stage
structure, correctly anticipating behavior in this extensive form is relatively easy. Sophistication re�ects
the idea that consumers understand that they are more prone to choose a premium option when under
pressure from the salesperson (high frame), and (in a low frame) avoid putting themselves in such
situations that lead to excessive purchases. Moreover, consumers are exposed to sales pitches on a
daily basis, they are experienced and understand the �ow of the interaction. In addition, sophistication
serves as a benchmark, by making it di�cult for the principal to extract surplus. Even if consumers
are fully strategically sophisticated and can opt out of the sales interaction at any point, framing in
extensive forms a�ects the sales interaction and its outcomes. Indeed, the principal turns consumers’
sophistication against them.

We also consider naive consumers (Section 4.4). They fail to anticipate that their tastes may change
and choose a continuation problem as if their choice from this problem would be made according to their
current tastes. For naive consumers, the principal can implement the e�cient quantities in the highest
frame and extract all surplus with a three-stage decision problem. She does so using decoy contracts in
a bait-and-switch: Naive consumers expect to choose a decoy option tailored to them and reveal their
type by choosing the continuation problem containing it at the root (bait), but end up signing a di�erent
contract due to the preference reversals induced by a change of frame (switch). When both naive and
sophisticated consumers are present in arbitrary proportions and this cognitive type is not observable
to the �rm, our results generalize (Theorem 3).6 The optimal extensive form still has three stages and

4This is in line with Corollary 2 in Salant and Siegel (2018), which states that there is no exclusion with two types, when
the principal o�ers a framed menu under a participation constraint in a neutral frame. A related result is in Eliaz and Spiegler
(2006). They show that there is no exclusion when the principal screens by the degree of sophistication. We show that
no-exclusion holds when the principal screens by payo� type.

5Another perspective is that a truly sophisticated agent foreseeing the changes of frame would instead become rational by
taking an integrated, frame-independent point of view. While this is certainly possible in some cases, we focus on a purely
procedural notion, which is consistent with the seminal work on time preference (Strotz, 1955; Laibson, 1997) and with the
evidence that framing e�ects are observed within-subject (Tversky and Kahneman, 1981) and even among domain experts
(Schwitzgebel and Cushman, 2015). Studying when and how agents “snap out of” their biases remains an important question
for future research.

6Spiegler (2011) notes that the principal can costlessly screen by cognitive type in a setting without taste heterogeneity.
The underlying di�erence in the role of decoys—as poison pills for sophisticates and as bait for naifs—is parallel to the result
that decoys cause sophisticates to act earlier and naifs to act later in task completion problems (Freeman, 2021).
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implements the same contracts as if the cognitive type were observable. Neither sophisticated nor naive
consumers gain information rents because of the presence of the other cognitive type.

Many jurisdictions mandate a right to return goods and cancel contracts, especially when the sale
happened under pressure (e.g. door to door). This gives consumers the option to reconsider their
purchase in a calm state of mind, una�ected by the immediate presence of the salesperson. In Section 4.5,
we analyze such regulation and �nd that—while the principal can no longer use framing to exaggerate
surplus—she can still use the resulting dynamic inconsistency to fully eliminate the information rent of
all types. Sophisticated consumers do not require protection by a right to return if they can decide to
avoid the seller, e.g. by not visiting the store, but naive consumers would bene�t even in this case.

Related Literature

de Clippel (2014) studies Nash implementation with choice correspondences that cannot be derived from
utility maximization but are not a�ected directly by the principal. Our setting is closer to multi-agent
mechanism design with a multi-stage mechanism because of the presence of di�erent frames. If we
reinterpret our decision maker as a group of individuals with common knowledge of their type but
di�erent tastes, one individual corresponding to each frame, the principal applies implementation
in backward induction without transfers. Herrero and Srivastava (1992) give abstract conditions for
implementability in a general setting, we derive a canonical 3-stage extensive form in the single-agent,
multiple-self setting and derive properties of the optimal contracts in the classic screening problem.7

A growing literature studies the manipulation of framing by �rms. Piccione and Spiegler (2012) and
Spiegler (2014) focus on the impact of framing on the comparability of di�erent products. Salant and
Siegel (2018) study screening when framing a�ects the taste for quality, as in our setting. In this paper,
the principal chooses a framed menu, while we study the optimal design of an extensive-form decision
problem to exploit the dynamic inconsistency generated by choice with frames and make predictions
about the structure of interactions. In addition, our model makes di�erent predictions for the use of
framing and e�ciency in the setting where the two are most closely comparable:8 Using extensive
forms, it is always more pro�table to use framing (not only when it is su�ciently weak) and framing
removes not only some but all distortions created by second-degree price discrimination in our setting.

Our article is also related to behavioral contract theory more generally (for a recent survey, see
Kőszegi 2014, for a textbook treatment, see Spiegler 2011), in particular to screening problems with
dynamically inconsistent agents (Eliaz and Spiegler, 2006, 2008; Esteban et al., 2007; Esteban and
Miyagawa, 2006a,b; Zhang, 2012; Galperti, 2015; Heidhues and Kőszegi, 2010, 2017; Yu, forthcoming;
Moser and Olea de Souza e Silva, 2019).9 These papers consider situations in which taste changes are

7Moore and Repullo (1988) show that subgame perfect implementation with multiple agents can be achieved using only
three stages. This relies on monetary transfers between agents, however, which is not feasible between multiple selves. This
restriction also turns the structure of the sequential problem on its head: the "test choice" happens on path while "challenging"
the initial report terminates the interaction.

8That is, comparing their Section 3 with our Section 4.5, where we impose a right to return the product in an exogenously
given "neutral" frame. They also consider a model without returns but with a "basic" product that has to be o�ered and an
insurance problem in which the monopolist can highlight one of the options, turning it into a reference point relative to which
consumers experience regret.

9Eliaz and Spiegler (2006, 2008) screen dynamically inconsistent agents by their degree of sophistication and optimistic
agents by their degree of optimism, respectively. Esteban et al. (2007); Esteban and Miyagawa (2006a,b) study screening when
agents are tempted to over- or underconsume. Zhang (2012) studies screening by sophistication when consumption is habit
inducing. Galperti (2015) studies screening in the provision of commitment contracts to agents with private information on
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given by the preferences of the agents (e.g. Gul and Pesendorfer (2001) or β-δ ) and consequently design
a 2-stage decision problem as induced by the natural time structure of the problem.10We study how a
principal chooses the sequence of frames and an extensive form of arbitrary (�nite) length to induce
dynamic inconsistency and we show that a 3-stage mechanism is optimal.

Given the optimal sequence of frames, this mechanism employs techniques similar to those in this
literature. In particular, it involves o�-path options that remain unchosen by every type ("decoys"). In
Esteban and Miyagawa (2006a) and Galperti (2015) such decoys make deviations less attractive and
are thus analogous to the decoy contracts we introduce in the mechanism for sophisticated agents.
Heidhues and Kőszegi (2010) show that credit contracts for partially sophisticated quasi-hyperbolic
discounters feature costly delay of the payment which the consumer fails to expect when signing the
credit contract. Immediate repayment is hence an unused option analogous to the “bait” decoys we
introduce to screen naive consumers.

Glazer and Rubinstein (2012, 2014) consider models where the principal designs a procedure such that
misrepresenting their type is beyond the boundedly rational agents’ capabilities. While their decision
problems are based on hypothetical questions about the agent’s type, we show that it is possible to
structure a choice problem with framing to make it impossible to imitate certain types.

There is a large literature on endogenous context e�ects, e.g. through focusing the attention of the
decision maker on attributes that vary strongly or are exceptional within the choice set (Bordalo et al.,
2013; Kőszegi and Szeidl, 2013). We consider the case of framing through features of the choice situation,
such as the sales pitch or the presentation format. Thus, consumers in our model �t into the choice with
frames framework of Salant and Rubinstein (2008).

Dynamic sales interactions can also be analyzed from the perspective of information provision
(e.g. Eső and Szentes (2007), Li and Shi (2017), Wei and Green (2020)). Information needs to satisfy a
martingale condition and consumers remain dynamically consistent, while we focus on the dynamic
role of framing to relax incentive compatibility by inducing dynamic inconsistency.

2 Frames and Extensive Forms

This section introduces our quasi-linear single-agent mechanism design framework with extensive
forms and frames.

2.1 Contracts and Frames

A contract c is a pair of a transfer p ∈ R and an outcome q from an interval Q ⊆ R. The space of
contracts is C = R × Q. Anticipating the application to monopolistic screening, in discussions we

their degree of time inconsistency, Heidhues and Kőszegi (2017) study selling credit contracts in this setting. Yu (forthcoming)
and Moser and Olea de Souza e Silva (2019) study optimal taxation problem, where agents are also heterogeneous in the degree
of present-bias.

10For β-δ , two decision periods correspond to three periods including the �nal consumption period. Longer horizons
are considered e.g. in Gottlieb and Zhang (2021), who show that in an insurance problem with symmetric information, all
the ine�ciency created by the exploitation of naivete is pushed to the �nal period. Following the pattern of preference
reversals ingrained in the β-δ speci�cation, the allocation cascades, always postponing the consumption shortfall by one period.
This allows virtual e�ciency in consumption smoothing problems as the number of periods grows, but creates unrecti�able
ine�ciency in an e�ort choice problem. We show that for a single decision problem with (partially) naive agents, the optimal
taste change pattern is h-l-h, which allows the designer to achieve full surplus extraction despite private information.
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sometimes refer to the principal as the seller, the agent as the consumer, q as quality and p as price.
There is a �nite set of frames F with |F | > 2 and a �nite type space Θ with |Θ| > 2. Each type is

a function θ : F → R++ that maps frames into payo� types, denoted as θf B θ (f ). We assume that
frames are distinct in the sense that no two frames induce the same vectors of payo� types. For a given
payo� type θf , the consumer is maximizing a quasi-linear utility function

uθf (p,q) B vθf (q) − p,

where v : R++ ×Q→ R is a twice di�erentiable function that is strictly increasing and concave in q.
We also assume that the environment satis�es a version of a single-crossing property. In particular, we
assume that v has increasing marginal di�erences that are bounded away from zero, that is, there exists
ϵ > 0 such that ∂2v

∂θf ∂q
> ϵ . For example, vθf (q) = θf q is a widely used functional form satisfying these

assumptions. Note that this model of framing can accommodate frames a�ecting price perception, as
they change the subjective trade-o� between outcomes and transfers.

The agent has an outside option which we normalize to 0 B (0, 0) and we assume 0 ∈ Q. We also
normalize vθf (0) = 0, for all payo� types θf .11 We say a vector of contracts c = (cθ )θ ∈Θ =

(
(pθ ,qθ )

)
θ ∈Θ

is nonnegative and write c > 0 if all outcomes qθ are nonnegative. We refer to the constraints

uθf (cθ ) > 0, and (Pfθ )

uθf (cθ ) > uθf (cθ ′) (ICf
θθ ′)

as the participation constraint for θ and the incentive compatibility constraint from θ to θ ′ in frame f ,
respectively.

Our central assumption is that the frames and types are ordered.

Assumption 1 (Comonotonic Environment). For any types θ ,θ ′ ∈ Θ and frames f , f ′ ∈ F ,

θf > θf ′ =⇒ θ ′f > θ
′
f ′ and θf > θ

′
f =⇒ θf ′ > θ

′
f ′ .

The �rst part of the assumption implies that frames can be ordered by their impact on the valuation.
There is a lowest frame, i.e. a frame inducing the lowest valuation for every type and a highest frame,
i.e. a frame inducing the highest valuation for every type. The second part implies that types can also
be ordered by their valuation independently of the frame. With slight abuse of notation, we denote the
order on frames and types using regular inequality signs.

In many cases, a frame has a similar impact on di�erent consumer types. The more e�ectively a
seller emphasizes quality, for instance, the higher a consumer values quality irrespective of their type.
The �rst part of our assumption is satis�ed as long as the direction of the impact of a given frame is
the same for all types. The second part is satis�ed as long as the size of the e�ect is not too di�erent
between types relative to their initial di�erence in valuation.

Assumption 1 precludes any frame from impacting the valuations of di�erent types in a di�erent
direction. For example, focusing a car buyers attention on emissions may increase the valuation of
a “green” car for some buyers while reducing the valuation of all cars, including the “green” car, for
others. Similarly, it rules out cases where the order of types by their payo� parameter depends on the

11Starting with an outside option (q0,p0) and an unnormalized ṽ , we can always setv(q,θf ) := ṽ(q0+q,θf )−ṽ(q0,θf )+p0.
This transformation preserves our assumptions. Note that this normalization is without loss as we assume an outside option
(instead of an outside utility level) and that this outside option is �xed (not type or frame dependent).
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frame. For example, the demand for health insurance coverage may be lower among smokers than
nonsmokers if they are not reminded about the long run e�ects of their habit, but is higher for smokers
than nonsmokers if the e�ects of smoking are made salient during the sale of insurance. It also rules
out that certain frames are speci�c to certain types. We discuss how we can relax our assumptions in
Section 3.4.

We now illustrate with two examples how our model encompasses framing e�ects encountered in
applications. First, consider a model of attention to attributes. The consumers’ attention can be directed
towards the quality of the products (fq ), towards the price (fp ), or be neutral (fn), induced e.g. through
the way the options are presented by the salesperson, the physical presence of the object (Bushong et
al., 2010), or the price format (Gourville, 1998; Schmitz and Ziebarth, 2017). Let λ > 1 parametrize the
impact of attention. The consumer evaluates his options according to

uθf (q,p) =


λθv(q) − p if f = fq

θv(q) − p if f = fn

θv(q) − λp if f = fp

for an increasing and concave function v . It is easy to see that we can �nd a suitable representation by
writing θfq = λθ , θfn = θ , θfp =

θ
λ and uθf (q,p) = θf v(q) − p.

As a second example, consider the sale of insurance. The type θ denotes the probability of the
damage of �xed size L. The agent has background wealth of w and is subject to loss aversion. Given a
reference point r , he evaluates an insurance coverage of q at price p according to

uθf (q,p) = θ V (w − L + q − p, r ) + (1 − θ )V (w − p, r )

Suppose there are two possible frames, which determine the reference point. A loss frame (l ) inducing
r ∈ (w − L + q − p,w − p), i.e. a higher insurance coverage is seen as reducing the loss and a gain frame
(д) inducing r = w − L, i.e. the agent has internalized the loss and the insurance coverage is seen as a
gain. This framing corresponds to presenting policies in terms of deductibles (loss) or rebates (gains) in
Johnson et al. (1993).12 Using the common piece-wise linear speci�cation for the value function, and
imposing a domain restrictions on the contracts such that an r ∈ (w − L + q − p,w − p) exists, these
preferences are represented by uθf (q,p) = θf q − p with θд = θ and θl = λθ

1+θ (λ−1) .

2.2 Extensive-Form Decision Problems

A mechanism is an extensive-form decision problem (EDP) with a frame attached to each decision
node. For example, the following situation can be represented by a two-stage extensive-form decision
problem. First, the consumer contemplates whether to visit the store and then purchases a product in
the store. Perhaps, the consumer is initially a�ected by marketing materials (frame at the root) and then
the consumer is a�ected by the sales pitch in the store (frame at the second stage).

Formally, an EDP is a perfect- and complete-information extensive-form game with perfect recall
where the players are the multiple selves of the agent corresponding to di�erent frames and the outcomes

12See also Gottlieb and Mitchell (2020), who show that the susceptibility to narrow framing (corresponding to a state-
dependent reference point such that individuals perceive the insurance premium as a loss and the net insurance payout as a
gain) is an important determinant of purchasing long-term care insurance, dwar�ng the e�ect of risk aversion and adverse
selection.
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are contracts. We provide a formal de�nition below to introduce the notation used in the analysis. Let
Ek denote the set of all k-EDPs, i.e. extensive-form decision problems with up to k stages. For notational
convenience, let E0 B C. For any set S , let P(S) denote the set of all �nite subsets of S containing the
outside option 0. Then construct the set of 1-EDPs as

E1 B P(E0) × F ,

that is, a 1-EDP e = (A, f ) is a pair of a �nite menu of contracts A and a frame f . For each k > 1, the set
of k-EDPs is

Ek B P
(
∪k−1
l=0 E l ) × F ,

so that a k-EDP e = (E, f ) is a pair of a �nite set E of EDPs with less than k stages and a frame f .13

Finally, the set E of all �nite EDPs is given by

E B
∞⋃
k=1

Ek .

To illustrate, in terms of our notation, the EDP in Example 1 is
({ ({({

c1,d2, 0
}
,h

)
, 0

}
, l
)
, c2, 0

}
,h

)
.

Finally, note that we require the outside option to be available at each stage. In other words, the agent
can end the interaction at any point. An extensive-form mechanism models a single binding decision
that the agent arrives at in several steps, e.g. the interaction with an insurance agent leading to the
signing of the contract. In such situations, forcing the agent to continue to participate in the mechanism
risks backlash and is also legally challenging as pre-contractual duties are limited and damages are
speculative. Methodologically, with such a strong form of participation constraint, our model makes
it harder for the principal to use framing e�ects for implementation, and our results can be viewed as
providing a lower bound on the set of implementable contracts and maximal pro�ts. We discuss the
outcome with alternative assumptions on participation in Sections 3.4 and 4.6 and analyze the case with
a participation constraint in a �xed frame in Section 4.5.

Choice from Extensive-Form Decision Problems We now introduce our main solution concept.
It is immediate to de�ne the choices of an agent of type θ in a 1-EDP (A, f ) as the θf -optimal contracts
in A. To de�ne the agent’s choice for all EDPs we need to make an assumption on how he anticipates
his choices at subsequent decision nodes. For the main part of the paper, we assume that the agent
is sophisticated.14 That is, presented with a choice between several continuation problems, the agent
correctly anticipates future choices, but chooses the continuation problem according to her current
frame. The current self has no commitment power other than the choice of a suitable continuation
problem at the current stage.

Formally, when an EDP e is seen as a game between multiple selves, the set Σe ⊆ CΘ of solutions of
e is the set of vectors of subgame perfect Nash equilibrium outcomes, i.e. vectors consisting of contracts
obtained via backward induction for each type. The de�nition is standard, but we provide one for
completeness.

First, a mapping σ : Θ→ C is a solution of a 1-EDP e = (A, f ) ∈ E1, i.e. σ ∈ Σe , if and only if σ (θ )
maximizesuθf onA for all θ . Now take any k > 1 and suppose that Σe is well-de�ned for all e ∈ ∪k−1

l=0 E
l .15

13Note that the choice of frame at each stage is unrestricted. In particular, the frame at the root of an EDP does not place
any constraints on subsequent frames. We discuss the role of this assumption in Section 3.4.

14We analyze naive consumers in the context of our screening application in Section 4.4.
15For notational convenience, let Σe0 = {θ 7→ e0},∀e0 ∈ E0 = C.
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Then consider a consumer facing a k-EDP ek = (E, f ) ∈ Ek . Choosing between continuation problems
in E, she anticipates her choice σ e (θ ) ∈ C in each e ∈ E, but evaluates the contracts {σ e (θ )}e ∈E in the
current frame f . Thus, σ is a solution of ek if there exists a solution σ e ∈ Σe for every e ∈ E, such that
for all θ ∈ Θ

σ (θ ) ∈ argmax
e ∈E

uθf (σ
e (θ )).

We say that a vector of contracts c is implemented by an EDP e if c is a solution of e . We call c
implementable if it is implemented by some EDP.

3 Implementable Contracts

In this section, we provide a characterization of all implementable contracts. Before analyzing the
general problem, it is instructive to consider two special cases.

3.1 Two trivial special cases

First, consider a “single-stage” setting, in which the principal can use only choose a 1-EDP. Clearly, in
this case the principal cannot use multiple frames. Second, consider a “single-frame” setting, in which
the EDP must use the same frame at every stage. The extensive-form structure does not matter in this
case: As the agent is perfectly rational and dynamically consistent, she picks the most preferred contract
available in the extensive form. Hence, an extensive form is equivalent to an unstructured menu o�ering
the same set of contracts.

In both cases, the implementation problem is a standard static problem. That is, a revelation principle
applies, and implementability is equivalent to incentive compatibility and participation constraints
being satis�ed in some frame.

Observation 1. For each c ∈ C, the following are equivalent:
(i) c is implementable by a 1-EDP.
(ii) c is implementable by an EDP using only a single frame.
(iii) c satis�es the ICf

θθ ′ and Pfθ constraints for all θ ,θ ′ for some f ∈ F .

We provide all omitted proofs in Appendix A.
Individually, framing and extensive forms do not qualitatively a�ect the implementation possibilities.

It is only through their interaction that they realize their potential.

3.2 Canonical Extensive Forms

In this section we show that despite the complexity of the environment, contracts can be implemented
using a simple three-stage structure. Towards this result, we de�ne a class of EDPs which share structural
features. De�ne the high and low frames h and l as the highest and second highest frames

h B argmax
F

θ , l B argmax
F \{h }

θ ,

for some θ ∈ Θ, respectively, and note that these de�nitions are independent of θ under Assumption 1.
First, towards a de�nition of canonical EDPs, partition the set of types Θ into two sets corresponding

to the two ways to present the contract associated to a given type: Contracts cθ for revealed types
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(θ ∈ ΘR ) are presented at the root, while contracts for concealed types (θ ∈ ΘC ) are presented in separate
continuation problems eθ . Then, the three stages are (see Fig. 2):

1. Root: choose in the high frame between contracts for revealed types, continuation EDPs for
concealed types, and the outside option.

2. Continuation problem for a concealed type θ : choose in the low frame between decoys for types
below θ , continue to the terminal choice for θ , and the outside option.

3. Terminal choice for a concealed type θ : choose in the high frame between a contract for θ , decoys
for types above θ , and the outside option.

Figure 2: A canonical EDP for (cθ 1 , . . . , cθ 5 ) with ΘR = {θ
2,θ 3,θ 5} and ΘC = {θ

1,θ 4}.

h

l

h

cθ 1 dθ
1

θ 2 dθ
1

θ 3 dθ
1

θ 4 dθ
1

θ 5 0

0

cθ 2 cθ 3 l

dθ
4

θ 1 dθ
4

θ 2 dθ
4

θ 3 h

cθ 4 dθ
4

θ 5 0

0

cθ 5 0

De�nition 1. An EDP e is a canonical EDP for a vector of contracts c if there exists a partition {ΘC ,ΘR}

of Θ, and decoy contracts {dθθ ′}θ ∈ΘC ,θ ′,θ , such that

e =

(
{eθ }θ ∈ΘC ∪ {cθ }θ ∈ΘR ∪ {0},h

)
, where (1)

eθ =

({ [
{cθ , 0} ∪ {dθθ ′}θ ′>θ ,h

]
, {0} ∪ {dθθ ′}θ ′<θ

}
, l

)
,∀θ ∈ ΘC . (2)

The extensive form in Example 1 is a canonical EDP. Type θ 1 is concealed – his contract is available
only after a continuation problem – while type θ 2 is revealed – his contract is available immediately at
the root.

Our �rst main result provides a characterization of the implementable vectors of contracts. We say
that a statement holds if the space of outcomes is su�ciently large if there exists a �nite interval [q,q]
such that the statement holds for any Q ⊇ [q,q].

Theorem 1. For each nonnegative vector of contracts c , if the space of outcomes is su�ciently large, then
the following are equivalent

(i) c is implementable,
(ii) c is implementable by a canonical EDP,
(iii) c satis�es the constraints {Phθ }θ ∈ΘR , {P

l
θ }θ ∈ΘC , and {IC

h
θθ ′}θ ∈Θ,θ ′∈ΘR for some partition {ΘC ,ΘR} ofΘ.

Proof. Statement (ii) trivially implies (i) for any space of outcomes. It is, therefore, su�cient to show
that (i) implies (iii) and (iii) implies (ii) for some a su�ciently large quality domain. We establish these
implications in Propositions 1 and 2 below. �

This result implies that the principal can always use an EDP with a simple structure. First, implemen-
tation can be achieved in three stages for an arbitrary number of agent types, even though the principal
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has arbitrarily complex and long extensive forms at her disposal. As the number of types increases, the
structure and length of the decision problem stays the same, only the number of available contracts
increases.

Second, types are separated at the root. The principal does not use the extensive-form structure to
discover the type of an agent piecemeal, it is an implementation device to protect contracts against
imitation.

Third, only the two highest frames are used. As we have seen in Observation 1, if every decision node
uses the same frame, the extensive-form structure is irrelevant for the agent’s choice. Consequently,
the principal uses at least two frames in order to induce violations of dynamic consistency. As long as
the principal induces such violations, the decoys can be constructed irrespective of the number of or
cardinal di�erences between the frames used. Hence, two frames are su�cient for the principal to reap
all potential gains from such violations. Finally, only the highest two are used in the optimal EDP in
order to relax the participation constraints.

Finally, implementability does not put any restriction on the vector of outcomes. This is in contrast
to the classic setting with dynamically consistent agents where implementability typically implies
monotonicity.

Corollary 1. For every nonnegative vector of outcomes q, if the space of outcomes is su�ciently large,
then there exists a vector of transfers p such that (p, q) is implementable.

3.3 Necessary and Su�cient Conditions for Implementation

In order to provide the foundation for Theorem 1, we proceed in two steps. First, we identify necessary
conditions that every implementable vector of contracts has to satisfy. Then we show that the neces-
sary conditions are su�cient to ensure that the contract can be implemented by a canonical EDP. In
particular, we explicitly construct decoy contracts and show that the principal can thereby eliminate all
IC constraints into concealed types.

Necessary Conditions for Implementation by General EDPs

Consider an arbitrary EDP implementing a vector of contracts c = (cθ )θ ∈Θ. Denote the frame at the
root by fR . Extending the notion of revealed and concealed types from canonical EDPs, for each type θ
there are two possibilities: If there exists a path from the root to cθ with all decision nodes set in fR ,
then θ is called revealed. Alternatively, if every path from the root to cθ involves at least one fθ , fR ,
then θ is called concealed. As usual, we will denote the sets of revealed and concealed types by ΘR and
ΘC , respectively.

First, consider the participation constraints. If the path from the root to cθ passes through a node
in frame f , then, since the outside option is always available, cθ needs to satisfy the corresponding
participation constraint P fθ . In particular, every contract has to satisfy the constraint at the root P fRθ .

We now turn to the incentive compatibility constraints. If θ is revealed, cθ can be reached by any
type from the root, as consumers are dynamically consistent when the frame does not change along the
path. Consequently, for any θ ′, cθ must not be an attractive deviation, that is

uθ ′fR
(cθ ′) > uθ ′fR

(cθ ), (ICfR
θθ ′)

for all θ ′ ∈ Θ and θ ∈ ΘR .
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If θ is concealed, there is a change of frame along the path to cθ . This induces a violation of dynamic
consistency, which may make deviations into cθ impossible. As we are looking for necessary conditions,
we impose no incoming IC constraint in this case.

The argument so far identi�es a family of conditions indexed by (fR , { fθ }θ ∈Θ,ΘC ), such that a
vector of contracts is implementable only if it satis�es at least one member of the family. The following
Proposition shows that for nonnegative c, we can always set fR = h and fθ = l for a suitably chosen ΘC .
First, we can set fR = h by concealing all types if necessary. Then, the exact frames { fθ }θ ∈Θ only a�ect
the participation constraints, which are relaxed by moving to higher frames, while the change of frame
bypasses IC. Consequently, the contract must satisfy the least restrictive participation constraints, i.e. in
the highest and second highest frame.

Proposition 1. If a nonnegative vector of contracts c is implemented by an EDP, then it satis�es the
constraints {Phθ }θ ∈ΘR , {P

l
θ }θ ∈ΘC , and {IC

h
θθ ′}θ ∈Θ,θ ′∈ΘR for some partition {ΘC ,ΘR} of Θ.

The necessary conditions illustrate the trade-o� between using framing to relax individual rationality
and its use to discourage deviations. For revealed types, the participation constraint needs to be satis�ed
only in the highest frame, the frame resulting in the least restrictive constraint. This results in the
largest set of individually rational contracts. For concealed types, the participation constraint needs
to be satis�ed in the second highest frame. This shrinks the set of individually rational contracts. The
principal is compensated for this reduction through the removal of IC constraints into concealed types.

Su�cient Conditions for Implementation by Canonical EDPs

To construct a canonical EDP that implements a vector of contracts c, we proceed in two steps. First, we
need to determine the set of concealed types. Clearly, type θ can be concealed in a canonical EDP only
if cθ satis�es the participation constraint Plθ , since otherwise he would prefer to opt out in the second
stage. Second, for each concealed type θ we construct a continuation problem using decoys which make
all deviations intro cθ impossible.

Proposition 2. If a nonnegative vector of contracts c satis�es the constraints {Phθ }θ ∈ΘR , {P
l
θ }θ ∈ΘC , and

{ICh
θθ ′}θ ∈Θ,θ ′∈ΘR for some partition {ΘC ,ΘR} of Θ, then c is implementable by a canonical EDP if Q is

su�ciently large.

As in Example 1, the principal constructs decoys for the �nal stage to render downward deviations into
concealed types impossible in the extensive form. She furthermore constructs decoys for the intermediate
stage to render upward deviations into concealed types impossible as well. These constructions are the
central step in our results and we therefore present them in the text. They ensure that if θ is concealed,
no type θ ′ , θ can successfully imitate θ . Neither cθ nor the decoys in eθ interfere with the choices of
any other type as they are dominated by the outside option at the root (i). Furthermore, θ chooses the
intended contract (ii). This construction requires a su�ciently large space of outcomes.

Lemma 1 (Decoy Construction). For any θ ∈ Θ and nonnegative cθ ∈ C, cθ satis�es Plθ if and only if
there exist decoys (dθθ ′)θ ′,θ , such that the corresponding eθ in (2) has a solution σ that satis�es

(i) σ (θ ′) 4θh 0 for all θ ′ , θ , and
(ii) σ (θ ) = cθ .

Construction. The construction of the decoys and the continuation problem eθ is illustrated in Fig. 3. At
the terminal stage, agents are presented with the choice between the contract cθ , the outside option and
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Figure 3: The construction of eθ .
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a set of decoys {dθθ ′}θ ′>θ , one for every type greater than θ . Given a contract cθ , the decoy dθθ 1 for the
next largest type θ 1 has to satisfy

uθ 1
l
(0) > uθ 1

l
(dθθ 1). (3)

uθ 1
h
(cθ ) 6 uθ 1

h
(dθθ 1) (4)

For a parsimonious construction, we pick dθθ 1 at the intersection of the two indi�erence curves (Fig. 3b).
Then, the decoy dθθ 2 for the next type θ 2 solves

uθ 2
l
(0) = uθ 2

l
(dθθ 2). (5)

uθ 2
h
(dθθ 1) = uθ 2

h
(dθθ 2) (6)

Proceeding by induction, we construct decoys for all θ ′ > θ .
At the root of eθ , agents are presented with the choice between the continuation, the outside option,

and a set of decoys {dθθ ′}θ ′<θ , one for every type smaller than θ . Similarly to the above, we now proceed
downwards from cθ . The decoy dθθ−1 for the next smaller type θ−1 is implicitly de�ned by the system

max{uθ−1
l
(cθ ), 0} = uθ−1

l
(dθθ−1). (7)

uθ−1
h
(0) = uθ−1

h
(dθθ−1) (8)

Proceeding by induction as above, we construct decoys for all θ ′ < θ . Now we de�ne a solution σ as
follows. The single-crossing property ensures that each type θ ′ > θ chooses their corresponding (decoy)
contract out of the menu {cθ ,dθθ1

, . . . ,dθθm , 0} in frame h. At the root of eθ , θ will choose its contract
since it satis�es Plθ and any θ ′ > θ will choose the outside option. The {dθθ ′}θ ′<θ are not attractive to
those types by single crossing. Turning now to the types θ ′ < θ , single crossing also ensures that they
prefer the outside option or cθ at the terminal stage over the decoys. At the root of eθ , they choose their
respective decoy by construction and single crossing. Furthermore, it is less attractive than the outside
option in the high frame. We formally verify the construction in Appendix A. �

As is apparent from the above construction, the decoys in the �nal stage (associated with an increase
in payo�-type) circumvent the downward IC constraints and the decoys in the intermediate stage
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(associated with a decrease in payo�-type) circumvent the upward IC constraints. Therefore, a two-stage
decision problem with frames h-l would be su�cient if only upward IC are of concern. All three stages
are needed even if only downward IC are of concern, as starting in the high frame allows for revealed
types with a relaxed participation constraint.16

3.4 Discussion

Weakening Comonotonicity Our assumptions can be relaxed at the cost of parsimony. Suppose that
(i) there exists a unique highest frame, i.e, there exists h ∈ F such that {h} =

⋂
θ ∈Θ argmaxf ∈F θf ; and (ii)

comonotonicity holds locally, i.e. for each θ there exists a “second highest” frame l(θ ) ∈ argmaxf ∈F \{h } θf
such that for all lower types θ ′h < θh we have θ ′l (θ ) 6 θl (θ ) and θ ′l (θ ) < θ

′
h and for all higher types θh < θ ′h

we have θ ′l (θ ) < θ
′
h . Then our results generalize, replacing l with l(θ )when constructing the continuation

problem eθ .17 A simple su�cient condition for (i) and (ii) is that there is an unambiguously highest and
second highest frame.

Consider the following example that violates Assumption 1, but satis�es the assumption above. A
product has n �aws and there are n types of consumers, such that for type θ i �aw i is irrelevant. The
sales person can either avoid discussing the �aws (high frame), or focus the attention on one of them
(frame li ). The principal can implement any contract satisfying the participation constraints in the
highest frame using a canonical EDP with ΘC = Θ and the type-speci�c low frame in the second stage.
In the screening application of the following section, the principal can extract all surplus in this case.

Commitment and Direct Mechanisms The agent is sophisticated but lacks commitment. This is
crucial, as the power of the principal to relax IC constraints by concealing types relies on the resulting
dynamic inconsistency. In particular, this implies that our contracts cannot be implemented by a
direct mechanism. Restricting to direct mechanisms e�ectively gives commitment as a single-stage
interaction does not allow for dynamic inconsistencies. As observed by Galperti (2015), with dynamically
inconsistent agents the revelation principle doesn’t apply directly. Instead, agents need to resubmit their
complete private information at every stage. In our setting, working with indirect mechanisms is more
convenient.

Random Mechanisms We restrict the planner to a deterministic extensive-form mechanism. This is
without loss for the implementation of a deterministic contract. To see why, note that the only way a
random mechanism could weaken the conditions for implementation is by relaxing the Plθ constraints
for concealed types. If the contract violates this constraint for a concealed type, however, this type
cannot pass through a decision node with frame l with any positive probability. But then the type is
revealed and randomization cannot help implementation.

16This relates to the �ndings of Esteban and Miyagawa (2006a), who study a screening problem with temptation preferences
when the principal designs a two-stage EDP (menu of menus). As in Section 4, it is the downward constraints which are
essential to circumvent. The principal achieves this and fully extracts the untempted surplus when consumers are tempted to
overconsume (corresponding to l-h) but cannot circumvent the IC constraints when consumers are tempted to underconsume
(corresponding to l-h). Similarly, Yu (2020) shows that the full surplus of the patient period 0 self can be extracted in a β-δ
setting with immediate consumption and delayed payment (period 0 and period 1 preferences corresponding to l-h).

17For a given contract it is su�cient that local comonotonicity holds for all concealed types. Furthermore, if θ ′l (θ ) is
su�ciently low for θ ′ > θ – violating Assumption 1 – it might be that an explicit decoy is not even required.
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Due to the discrete nature of moving from revealing to concealing a type, it can be advantageous to
implement a random contract using a random mechanism even for a principal with a strictly concave
objective. We return to this point at the end of the next section.

Participation Constraint At Every Stage We assume that the agent can opt-out and choose the
outside option at every stage of the decision problem. This is crucial for the trade-o� between relaxing
participation (by revealing) and relaxing incentive compatibility (by concealing). A weaker restriction
would be to require the outside option to be available only at the root. This corresponds to a mechanism
that agents enter voluntarily already knowing their type, but cannot exit at will. In this case, the principal
can implement any vector of contracts that satis�es the participation constraint in the highest frame.
The structure (three stages and two frames) and construction of decoys are analogous, but concealing a
type no longer involves a tightening of the participation constraint.

Anticipated and Lingering E�ects of Frames We assume that the principal is unrestricted in the
choice of frames and, in particular, that a change of framing is e�ective.18 One might suppose that
framing e�ects are instead partially “sticky”. That is, if the principal is choosing f ′ after f , then the
agent’s payo� type will be αθf ′ + (1 − α)θf for some α ∈ (0.5, 1]. Similarly, suppose that the e�ect of
the frames used through the decision problem a�ect the agents evaluation at every stage, as they are
considered by the agent when parsing the problem as a whole and stay in the back of the mind of the
agent. That is, the agent’s payo� type when put in frame f is given by αθf + (1 − α)θ̃ where θ̃ is the
average payo� type over all frames used in the decision problem. Our results generalize to both cases.

Contracts Below the Outside Option The main theorem generalizes naturally to contracts that
may contain negative outcomes (i.e. outcomes smaller than the outside option). When all are in the
negative domain, single-crossing implies that lower payo� types have higher valuations. Accordingly,
the characterization is a mirror image of Theorem 1 simply replacing the highest and second-highest
with the lowest and second-lowest frame. When the vector of contracts has both negative and positive
outcomes, the frame at the root becomes a free variable. Such a vector is implementable if and only
if it is implementable in a canonical EDP with some frame at the root. The structure stays the same,
but there is one novel feature: If the contract satis�es the participation constraint for all types in an
intermediate frame (i.e. one that is neither the highest nor the lowest), there is no trade-o� between
incentive compatibility and participation. Using a frame higher than the frame at the root for types with
a positive outcome and a frame lower than the frame at the root for types with a negative outcome, the
principal can conceal all types without tightening their participation constraint.

Binding Bounds on Quantities The canonical EDP gains its implementation power from its decoys,
which can be constructed for any vector of contracts and any comonotonic vector of types and frames.
The construction, however, does require su�cient room in the space of outcomes to accommodate
these decoys. Figuratively speaking, constructing decoys is akin to parallel parking: You can park a
car no matter its size and steering angle (corresponding here to the contracts and payo� types) in one

18This is in line with evidence showing that framing e�ects, such as gain-loss, are observed within-subject (Tversky and
Kahneman, 1981) and even among philosophers who claim to be familiar with the notion of framing, to have a stable opinion
about the answer to the manipulated question and were encouraged to consider a di�erent framing from the one presented
(Schwitzgebel and Cushman, 2015).
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swoop, as long as the parking space is su�ciently long. For any �xed length, however, it may require
many back-and-forth maneuvers, the exact number of which depends on these details. Similarly, with a
restricted space of contracts there can be a vector of contracts that is implementable by a k-EDP but not
by a shorter EDP, for arbitrary odd k , as the following example illustrates.

Example 2. Consider a setting with two types, θ > η, two frames and linear valuation vθf (q) = θf q.
Now suppose Q = [0,qmax], where we take the upper bound to be binding in constructing the decoy.
Consider a contract cθ <θh 0 and cη <ηl 0 and assume that the upward IC is slack.

Figure 4: Example 2.
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Analogous to Lemma 1, we need to construct decoys (Fig. 4). The decoy at the terminal stage of the
continuation problem for η must be north-west of the line ηl and south-east of the line D1. In order
to reduce the deviation surplus of the high type as much as possible, it is best to choose the highest
quality decoy, i.e. d1, and move to d2 in the intermediate stage (frame l): This is the contract with the
lowest surplus from the point of view of θh that is unattractive to ηl and acceptable over the previously
chosen decoy for θl . Clearly, this two-stage continuation problem is not su�cient to reduce the deviation
surplus to zero. This is because we could not push d1 to the intersection d̃ of the line D1 and P lθ due
to the upper bound on q. Having reduced the deviation surplus of the high type as much as possible
at this stage, we can however proceed iteratively until we can place a decoy north-west of the line P lθ .
Then, the high type opts out in frame l and we have thus reduced his deviation surplus to zero and
implemented the contracts.

We formalize this construction in the appendix and show that at least 2 dme steps are required to
implement the contract, where m = log

(
qmax

qmax−q0
+

q0ηl−p0
(qmax−q0)(θl−ηl )

) /
log

(
1 + θh−θl

θl−ηl

)
and (p0,q0) B cη .

As is easy to see,m grows without bounds as qmax ↘ q0, as cη delivers more rent and as the impact of
framing on the high type vanishes. It shrinks to 1 as qmax grows and as the e�ect of framing on the high
type increases. N

4 Application: Optimal Screening

This section applies the insights developed in the characterization of the implementable contracts to the
monopolistic screening problem. We build on the classic model of price discrimination (Mussa and Rosen,
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1978; Maskin and Riley, 1984). As in the implementation problem, the �rm designs an extensive-form
decision problem and for every decision node picks a frame a�ecting consumer valuations.

4.1 The Firm’s Problem

The monopolist produces goods of quality in Q = [0,∞) at a convex cost κ : Q → R which is twice-
di�erentiable and satis�es regularity conditions: κ(0) = 0, κ ′ > 0, κ ′′ > 0 and v ′θf (0) − κ

′(0) > 0,
limq→∞v

′
θf
(q) − κ ′(q) < 0 for all θf ∈ R++. We denote the e�cient quality for a payo� type θf by q̂θf

which is de�ned as the solution of

v ′θf (q̂θf ) = κ
′(q̂θf ). (9)

The e�cient quality is unique, positive and strictly increasing in θf by our assumptions on v and κ. We
denote the contract o�ering this quality and extracting all surplus from the corresponding payo� type
by ĉθf B

(
vθf (q̂θf ), q̂θf

)
.

A remark on the assumption Q = [0,∞) is in order. It corresponds to a situation in which goods
produced by the �rm are superior in quality to the outside option (normalized to 0) which is interpreted
as not purchasing at all. While this is a natural assumption in this context, it also precludes the
direct application of Theorem 1 to show that all contracts—and hence a fortiori the optimal ones—are
canonically implementable.

Given a vector of contracts c =
(
(pθ ,qθ )

)
θ ∈Θ, the pro�t of the �rm is given by19

Π (c) B
∑
θ ∈Θ

µθ (pθ − κ(qθ )) ,

where µθ ∈ (0, 1) is the prior probability of type θ ∈ Θ. Finally, the �rm designs an EDP to maximize
pro�ts

Π∗ B sup
e ∈E,c∈Σe

Π (c) . (Opt)

We say that c (canonically) solves (Opt) if it is (canonically) implementable and Π(c) = Π∗.
The �rm’s problem is animated by the interaction of framing and extensive forms. Only both

features together allow the principal to use di�erent frames at di�erent stages of the decision and
thereby generate violations of dynamic consistency which can be exploited. If the �rm were restricted to
choose a 1-EDP, i.e. a menu and a frame, or if only a single frame were available, the problem collapses
to a simple static screening problem (Observation 1). In this case, it is optimal to choose the highest
frame h, in order to maximize consumer valuations.

4.2 Optimal Contracts

We now show that the principal’s (Opt) problem over the space of extensive forms is equivalent to a
two-step maximization problem based on the necessary conditions for implementation. This relaxed
problem characterizes the optimal vector of contracts.

19In particular, we assume that there are no direct costs of the sales interaction. Our results are qualitatively robust to this
possibility. If there are costs per frame, the principal still uses at most two frames, but which ones will depend on their relative
costs. If the number of stages itself is the source of the costs, the solution may be a two-stage EDP.
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An Equivalent Problem in Price-Quality Space

Consider the pro�t maximization problem over contracts subject to the necessary condition for imple-
mentation (Proposition 1). Recall that these conditions are indexed by the set of concealed types which
is now an additional choice variable for the principal. Clearly, this problem is a relaxation of (Opt).

ΠR = max
ΘC ⊆Θ

sup
c∈C

Π(c) (RP)

s.t. uθh (cθ ) > 0, ∀θ ∈ ΘR B Θ \ ΘC (Phθ )

uθl (cθ ) > 0, ∀θ ∈ ΘC (Plθ )

uθh (cθ ) > uθh (cθ ′), ∀θ ∈ Θ,θ ′ ∈ ΘR (ICh
θθ ′)

We say that c solves (RP) if (RP) has a solution (ΘC , c).
In this application, Theorem 1 is not directly applicable and not every vector of contracts satisfying

the necessary conditions is implementable, as we cannot guarantee a su�ciently large space of outcomes.
Nevertheless, the optimal contract subject to the necessary conditions is implementable.

Theorem 2. For each c ∈ C, the following statements are equivalent:
(i) c solves (Opt),
(ii) c canonically solves (Opt),
(iii) c solves (RP).

Moreover, such a solution exists and the set of concealed types ΘC in (ii) can be taken to be same as ΘC in
(iii) and vice versa.

In other words, the optimal contract is canonically implementable and characterized by the relaxed
problem (RP). The key step of the proof of Theorem 2 is to show that in the solution of (RP), all upward
IC into concealed types are satis�ed. Therefore, in order to implement this solution in a canonical EDP,
we only need to discourage downward deviation by placing decoys in the �nal stage of all continuation
problems. This construction does not require qualities below the outside option and is hence possible in
the present setting.

Without the equivalent formulation in (RP), even verifying the existence of a solution to (Opt) can be
troublesome. Theorem 2 shows that instead of a complex optimization problem de�ned over extensive
forms, the principal can solve well-behaved contracting problems over a menu of price-quality pairs,
one for each potential set of concealed types and compare the attained values to �nd the optimum.20

Once the principal found the (RP)-optimal concealed types and vector of contracts, it is easy to construct
a canonical EDP implementing it using Lemma 1.

This result implies that the optimal sales interaction takes a simple form, which we interpret as
follows: At the beginning, the agent is presented a range of contracts {cθ }θ ∈Θ while the salesperson
focuses their attention on quality (high frame). Some of those contracts (those intended for revealed
types) can be signed immediately, some others (those intended for concealed types) are only available
after an additional procedure that gives the agent some time to consider, while sales pressure is reduced
(lower frame). This can be an explicit wait period, where the agent is asked to think about the contract
and recontact the seller. Alternatively, the change in frame could be achieved by a change in the

20Indeed, a stronger result holds. The (RP)-optimal contracts for any, even suboptimal, set of concealed types is imple-
mentable. The problem can be further simpli�ed by noting that only local IC—those into the nearest revealed types—are
binding. See Appendix A.
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salesperson or by acquiring a con�rmation that this type of o�er is even available for the agent. If the
agent is still interested after this ordeal, she is presented with additional o�ers, the decoy contracts. On
path, these o�ers remain unchosen, the agent chooses the contract she initially intended to obtain.

No Shut-down

In the classic model of screening, it is sometimes optimal for the monopolist to exclude low types by not
selling to them. In our model, this is never the case because concealing a type is always strictly better
for the monopolist than exclusion.

Proposition 3. The optimal contract (p∗θ ,q
∗
θ ) for a type θ satis�es 0 < qθ 6 q∗θ 6 q̂θh , where vθh (qθ ) −

κ(qθ ) B vθl (q̂θl ) − κ(q̂θl ). In particular, every type buys a strictly positive quality.

Indeed, concealing a type can be interpreted as a soft form of shut-down. In order to eliminate
information rents, the principal reduces the revenue extracted from a type. The key di�erence is that it
can be achieved at a strictly positive quality, while extracting revenue from this type.

Optimal Contracts for Concealed Types

For concealed types, we can provide an additional lower bound on quality in the optimal contract. The
contract for concealed types is subject to constraints in two frames: a participation constraint in the
lower frame l and an IC constraint in the higher frame h. Since concealed types cannot be imitated, there
is no reason to distort their quality downward below the e�cient quality in the lower frame, q̂θl . It can
be optimal, however, to increase the quality above this level in order to deliver rent more cost-e�ectively
in order to satisfy their IC constraint.

Proposition 4. Consider a concealed type θ ∈ ΘC . Then, the optimal quality is bounded between the
e�cient quality in frame l and h: q̂θl 6 qθ 6 q̂θh . In particular, the optimal contract is

(pθ ,qθ ) =


ĉθl , if ∆θ 6 vθh (q̂θl ) −vθl (q̂θl ),(
vθl (q

∗),q∗
)
, if ∆θ ∈

[
vθh (q̂θl ) −vθl (q̂θl ),vθh (q̂θh ) −vθl (q̂θh )

]
,(

vθh (q̂θh ) − ∆θ , q̂θh
)
, if ∆θ > vθh (q̂θh ) −vθl (q̂θh ),

(10)

where q∗ solves vθh (q
∗) −vθl (q

∗) = ∆θ , and ∆θ B argmaxθ ′∈ΘR uθh (cθ ′) denotes the rent delivered to type
θ ∈ ΘC , and c is the optimal contract.

If the required rent is low, only the participation constraint in the low frame binds and the optimal
contract is the e�cient contract for the type in the low frame. As more rent needs to be delivered in the
high frame, it becomes optimal to increase the quality of the product up to the e�cient quality in the
high frame.

The contract further illustrates the cost of concealing a type. From the perspective of the high
frame, a concealed type receives at least the minimal rent vθh (q̂θl ) −vθl (q̂θl ), reducing the payo� of the
principal. The cost of concealing a type is decreasing in the information rent ∆. If ∆ is su�ciently high
(in the third regime of (10)), it is costless to conceal the type.

4.3 Optimal Concealed Types

Analogous to the distortion and exclusion in the classic screening problem, one might conjecture that it
is optimal for the principal to conceal low types and reveal high types. This is not true in general, but
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contains a grain of truth: Types are concealed in order to eliminate downward deviations into them,
which is not a concern for the highest type. Revealing the highest type is therefore always optimal.

Observation 2. Suppose (Θ∗C , c
∗) solves (RP) and the highest type θ = maxΘ is concealed, i.e. θ ∈ Θ∗C .

Then (Θ∗C \ {θ }, c
∗) also solves (RP).

In general, there are no other restrictions on the optimal set of concealed types, as the following
linear-quadratic three-type example illustrates. In Fig. 5 we plot the regions of the probability simplex
where particular sets of concealed types are optimal. All four remaining cases are realized for some
distribution. In addition, the restriction to monotone virtual values, which ensures monotonicity in the
classic screening model, doesn’t rule out any con�guration.

Figure 5: Optimal ΘC for θ 1 = (1, 3),θ 2 = (4, 5),θ 3 = (5, 6).
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Loosely speaking, concealed types are substitutes for the principal. Consider two types θ < θ ′. By
concealing θ , the principal reduces the rent θ ′ obtains, increasing the costs of concealing θ ′ (as it is more
costly to conceal a type if it has a low information rent; Proposition 4). In addition, a lower rent implies
that concealing θ ′ has a smaller bene�t as well, as information rents compound. Similarly, concealing θ ′

reduces the bene�t of concealing θ . This pattern of substitutability is re�ected in Fig. 5 as the regions
ΘC = {θ1} and ΘC = {θ2} touch.

Su�ciently Likely Types Are Revealed It is not pro�table to conceal very likely types, since the
gain from the reduction of information rents for other types is outweighed by the loss of pro�ts that
can be extracted from them directly.

Proposition 5. For any type θ there exists a probability threshold µ̄θ ∈ (0, 1), such that for any µθ ∈ [µ̄θ , 1],
an optimal set of revealed types contains θ .

This proposition suggests interpreting the contracts of revealed types as standard options, which are
relevant for common types of consumers and available immediately in the store, and the contracts for
concealed types as specialty options relevant for rare types of consumers and available only on order.
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High θl Favors Concealing The di�erence between the valuations in frames h and l determines the
cost of concealing. If we �x all payo� types, but increase the l-frame valuation of a concealed type, this
cost is reduced and this type remains concealed.

Proposition 6. Let ΘC be an optimal sets of concealed types for (Θ, µ) and let θ ∈ ΘC . De�ne θ̃ such that
θ̃l > θl , θ̃h = θh . Then, for the set of types (Θ \ {θ }) ∪ {θ̃ } there exists a solution of the principal’s problem
(RP) with the set of concealed types Θ̃C B (ΘC \ {θ }) ∪ {θ̃ }.

Fixing the highest valuation the principal can achieve for each type, the cost of concealing is low if
θl is high. We can interpret this as a more precise control of the principal over consumer valuations.
With su�cient control, she will conceal all types except for the highest.

Proposition 7. For any Θ, there exists an ε > 0 such that for any type space Θ̃ with {θh}θ ∈Θ = {θh}θ ∈Θ̃
and maxθ ∈Θ̃(θh − θl ) < ε , the optimal set of concealed types is Θ̃ \ {max Θ̃}.

4.4 Extension to Naive Consumers

So far, we have only considered fully sophisticated agents. We now study naive consumers. They
understand the structure of the extensive-form decision problem and the choices available to them, but
they fail to anticipate the e�ect of framing. Faced with an EDP, they pick the continuation problem
containing the contract they prefer most in their current frame.21 They fail to take account of the fact
that in this continuation problem, they may be in a di�erent frame and end up choosing a di�erent
contract.

Setup

Towards the de�nition of a naive solution, let C(e) denote the set of contracts in an EDP e . That is,
letting C(e) = e for e ∈ E0, de�ne

C(e) B
⋃
e ′∈E

C(e ′), for e = (E, f ).

Now call sθ : E ∪ E0 → E ∪ E0 a naive strategy for θ if for all e ∈ E0, (E, f ) ∈ E

sθ (e) = e

sθ (E, f ) ∈ E

C(sθ (E, f )) ∩ argmax
C(e)

uθf , �.

Put di�erently, when facing e = (E, f ), a consumer identi�es the f -optima in the set of all contracts
in e , C(e), and chooses a continuation problem containing an optimum.

We call ν : Θ → C a naive solution of an EDP e if there exists a naive strategy pro�le s such that
any type θ arrives at ν (θ ) by following sθ , i.e. ν (θ ) = (sθ ◦ · · · ◦

k times
sθ )(e) for e ∈ Ek . Let N e be the set of all

naive solutions to an EDP e .
We consider the case when there are both naive and sophisticated consumers and the principal

cannot observe their cognitive type. Let Θ = ΘS t ΘN be the disjoint union of the set of sophisticated

21A related idea is projection bias (Loewenstein et al., 2003). The main di�erence is that our construction depends on
the consumers’ ability to forecast their future actions, not tastes. In this general sense, sophisticated consumers exhibit no
projection bias, while naive consumers exhibit complete projection bias.
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types ΘS and the set of naive types ΘN . That is, we allow for the existence of θ s ∈ ΘS and θn ∈ ΘN that
di�er only in their sophistication, but not in their tastes conditional on any frame. De�ne the optimal
pro�ts similarly to (Opt) as

Π∗ B max
e ∈E,c∈C

Π (c) (11)

s.t. cθ ∈ Σe (θ ),∀θ ∈ ΘS ,

cθ ∈ N
e (θ ),∀θ ∈ ΘN .

Optimal Structure and Contracts

We illustrate in an example how the principal can use decoys to screen when naive types are present.

Example 3. Recall from Example 1 that there are two frames, {l ,h}, and two payo� types, {θ 1,θ 2}.
The key construction can be illustrated using three equally likely types, two naive and one sophisticated.
There is a naive version of both payo� types, and a sophisticated high type, formally Θ = ΘS t ΘN =

{θ s2} t {θn1,θn2}. In this setting, the principal can sell the h-e�cient quality to naive consumers and
fully extract their surplus. This creates no information rents for the sophisticated type – screening by
cognitive type is free. As a result, she can also implement the high-frame full-extraction contract for θ s2.
The optimal EDP is given in Fig. 6. It implements cn1 = (16, 4), cn2 = (36, 6), cs2 = (36, 6).

Figure 6: The optimal extensive-form decision problem in Example 3.
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First, consider the sophisticated type. As in Example 1, the contracts cn1,bn2 are more attractive
than the implemented cs2, but are concealed using the decoys ds2,ds2′, respectively.22

Let’s turn to the naive types. The leftmost continuation problem is intended for θn1. Even though
θn1 is concealed, the principal extracts full surplus in the high frame. How is this possible? At the
second stage in frame l , he indeed prefers the outside option over cn1. But, he wrongly believes that he
will choose the outside option after continuing. Hence, he continues and—back in frame h—chooses cn1.

In order to implement the contract for θn2, the principal needs to use a decoy. At the root, he strictly
prefers cn1 to cn2. In order to lure him into the middle continuation problem, the principal introduces a
decoy bn2. This decoy works di�erently from the decoys used with sophisticated consumers. It serves as
bait and is the most preferred contract out of the whole decision problem for θn2. As a consequence, he
continues into the middle continuation problem. There, the switch happens: bn2 is unattractive from the
perspective of the low frame and θn2 continues, expecting to pick the outside option in the continuation
problem. Like θn1 he reconsiders at the terminal node and ends up with cn2. N

22In this simple example, the three decoys can coincide, ds2 = bn2 = ds2′ = (40, 8), because there are only two di�erent
payo� types.
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This construction generalizes.23 The optimal EDP achieves the same solution as if the principal
knows which consumers are naive and the types of the naive consumers. Naive types don’t receive
information rents, they obtain the full extraction contract in the high frame. Sophisticated consumers
obtain the optimal contract according to Theorem 2.

Theorem 3. Let σ and ν be �rm-preferred sophisticated and naive solutions of an optimal EDP, respectively.
Then ν (θ ) = ĉθh for all θ ∈ ΘN and σ is a �rm-preferred optimal sophisticated solution for the set of types
ΘS and the conditional prior. Moreover, there exists an optimal EDP with the high-low-high structure.

The principal also uses decoy contracts for naive consumers, but their role is reversed: In the
construction for sophisticated consumers, we placed decoys in continuation problems to make sure that
no other type wants to enter the continuation problem, as they correctly anticipate that they would
choose the decoy. In the case of naive consumers, instead of decoys to repel imitators, we introduce
decoys in order to lure types into their corresponding continuation problems. Agents wrongly believe
that they will choose their respective decoy, which is the most attractive contract in the whole EDP for
them in their current frame. Once types are separated at the root of the decision problem, the dynamic
inconsistency introduced by changing frames allows the decision problem to reroute consumers from
their decoy to the intended contract.

The optimal extensive-form decision problem retains the simple three-stage structure, we only add a
continuation problem for each naive type to the extensive form described in Theorem 1. Consequently,
the optimum can be achieved by a three-stage EDP with |Θ| continuation choices at the root, similar to
a canonical EDP. As in the optimal EDP for sophisticated consumers, we do not require second-period
decoys. In the continuation problem for naive consumers, we have a decoy menu that lures in naifs while
ensuring that sophisticated types cannot deviate to the decoy. We provide the details of the construction
in Appendix A.

Welfare Gains from Sophistication

Are consumers better o� if they are sophisticated? Welfare statements in the presence of framing are
generally fraught with di�culty. In this case, we can rank the contracts obtained by sophisticated and
naive agents from a consumer perspective without taking a stand on the welfare-relevant frame.In
the following sense sophistication partially protects consumers from exploitation through the use of
framing.

Observation 3. For all types, the contract under sophistication is weakly preferred to the contract under
naivete from the perspective of every frame.24

From an e�ciency perspective, the two cases are not unambiguously ranked. For naive consumers,
the principal implements the e�cient quality from the perspective of the highest frame. Quality is lower
for sophisticated consumers, an e�ciency gain from the perspective of all frames except the highest one.

23Without principal-preferred tie breaking, the �rst-best in the highest frame can be implemented virtually. For the example,
the principal places an additional bait decoy together with cn1 (cn2, resp.). This bait gives the respective type a rent of ϵ from
the perspective of frame l . Therefore, they strictly prefer to continue at the intermediate stage. To obtain strict incentive
compatibility in the �nal stage—both relative to the outside option and to the newly added bait decoys—the contracts cn1 and
cn2 (and the decoys) need to be perturbed resulting in rents of order ϵ . As ϵ → 0, the solution converges to the solution with
principal-preferred tie breaking. This virtual implementation result holds in general for Theorem 3.

24This implies a weak improvement in the sense of Bernheim and Rangel (2009) if the two contracts are not identical.
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Discussion: Partial Naivete

We can also extend our results to partial (magnitude) naivete. Denote the parameter determining the
intensity of naivete by α ∈ [0, 1], with α = 0 representing full sophistication. Suppose a consumer
with current payo� type θf anticipates a future choice that will actually be made according to payo�
type θf ′ . Let θ̂ (θf ,θf ′,α) denote what he currently perceives to be his future payo� type. Assume θ̂ is
increasing in the �rst two arguments, monotonic in α and satis�es θ̂ (θf ,θf ,α) = θf for all α . Under full
sophistication we have θ̂ (θ ,θ ′, 0) = θ ′, under full naivete θ̂ (θ ,θ ′, 1) = θ . This structure ensures that a
partially naive agents’ predictions satisfy comonotonicity (Assumption 1).

Both the sophisticated construction (using decoys as poison pills) and the naive construction (using
decoys as bait) generalize to partial naivete: An arbitrarily small degree of sophistication (resp. naivete)
is su�cient. Since the naive construction achieves full extraction, it is preferable for the principal.
Therefore, there is a discontinuity in the optimal mechanism and pro�t at full sophistication.25 Formally,
this occurs because the quality of the decoys used in the mechanism grows without bounds as α → 0.
As a matter of practicality, we therefore would not expect the naive construction to be used for almost
fully sophisticated consumers. Instead, the sophisticated construction or an intermediate approach using
decoys both as bait and poison pills to extract more surplus could be employed.

4.5 Additional Participation Constraints and Cool-o� Regulation

In many jurisdictions, regulation mandates a right to return a product for an extended period of time after
the purchase. The express purpose of such regulation is to allow consumers to cool o� and reconsider
the purchase in a calm state of mind una�ected by manipulation by the seller.26 Interestingly, such
legislation typically applies only to door-to-door sales and similar situations of high sales pressure to
which consumers did not decide to expose themselves. If consumers decide to enter a store or contact a
seller, they are not protected by the law. This suggests that legislators consider the option to avoid the
�rm’s sales pressure entirely to protect consumers su�ciently.27 We evaluate this intuition using our
model.

Consider a situation when consumers decide in a neutral frame whether to go to the store. One can
interpret this decision as an additional interim participation decision at the root. Alternatively, suppose
that there is a regulation that allows consumers to return a product if they wish to do so ex-post in the
neutral frame (as in Salant and Siegel, 2018). One can interpret this decision as an additional ex-post
participation decision at every terminal decision stage.

Formally, denote the neutral frame by n ∈ F , n < h. This is the frame the consumer is in when
una�ected by direct sales pressure by the �rm.28 We call ē B ({e, 0},n) an interim modi�cation29 of e .
Next, we de�ne an ex-post-modi�cation e of an EDP e by replacing every non-0 contract c with a a 1-EDP
({c, 0},n) recursively. First, for any e ∈ E0, let e B ē . Then, having de�ned an ex-post modi�cation

25A similar observation holds in Gottlieb and Zhang (2021), where the contract for any level of partial naivete converges to
the e�cient one but the sophisticated constract stays ine�cient.

26E.g. directive 2011/83/EU: "the consumer should have the right of withdrawal because of the potential surprise element
and/or psychological pressure".

27Rights to return are also motivated by giving consumers an opportunity to physically inspect a good they ordered online,
while a cooling-o� period before ordering the product can help to protect consumers against projection bias. See Michel and
Stenzel (2021) for a comparison of these two policy instruments in this context.

28One possible e�ect of marketing is in�uencing this neutral frame, but we do not consider this margin.
29Here, the notion of interim modi�cation is de�ned on E ∪ E0 \ {0}. For simplicity, let 0̄ B 0
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on E j ,∀j = 0, . . . ,k , we de�ne the ex-post modi�cation for any e = (E, f ) ∈ Ek+1 as e B ({e ′}e ′∈E , f ).
We say that e is an EDP with an interim (ex-post) participation constraint if it is an interim (ex-post)
modi�cation of some EDP.

Figure 7: Interim and Ex-post Participation Constraints in Frame n
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Sophisticated Consumers If consumers are sophisticated, both constraints are equivalent and imply
that if a contract is chosen by type θ , then it must satisfy the additional participation constraint Pnθ .
Therefore, the �rm implements the e�cient allocation associated with frame n and leaves no information
rent to consumers.

Observation 4. Suppose Θ = ΘS . Let ē∗ and e∗ be optimal EDPs with interim and ex-post participation
constraints. Then, their �rm-preferred solutions σ̄ and σ , respectively, are such that for all θ ∈ Θ,

σ̄ (θ ) = σ (θ ) = ĉθn .

This observation follows immediately from Theorem 2. The principal can remove all incoming IC
constraints at the cost of an additional participation constraint in a lower frame. As such a constraint
is introduced anyway with interim or ex-post participation constraints, the principal can conceal all
types at no additional cost.30 Both restrictions protect against overpurchases relative to the preferences
in the neutral frame, but neither protects against the extraction of all information rents by exploiting
induced violations of dynamic consistency. Overall, whether sophisticated consumers bene�t from these
restrictions is ambiguous.

In line with the intuition suggested by policy, sophisticated consumers do not require the additional
protection of a right to return if they can avoid the interaction with the �rm altogether. They correctly
anticipate their future actions and hence—given a choice—only interact with a seller, if the result will
be acceptable to them from their current frame of reference rendering a right to return in this frame
super�uous.

Naive Consumers With naive consumers, we now need to distinguish between an interim choice to
initiate the interaction and an ex-post right to return in the same neutral frame. While a right to return
is still e�ective, naive consumers cannot protect themselves by avoiding the seller.

30Salant and Siegel (2018) show that the principal may not use framing when such a constraint is added to the problem of
designing a framed menu. In particular, the principal cannot necessarily extract all rents without the use of an extensive form.
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Observation 5. Suppose Θ = ΘN . Let ē∗ and e∗ be optimal EDPs with interim and ex-post participation
constraints. Then their �rm-preferred naive solutions ν̄ and ν satisfy for all θ ∈ Θ,

ν̄ (θ ) = ĉθh ,

ν (θ ) = ĉθn .

The intuition underlying the design of regulation does not apply for naive consumers. They are
overly optimistic about the outcome of their interaction with the seller. Naive consumers can always be
lured in with attractive decoys and consequently the option to avoid the seller is not su�cient to protect
them from over-purchasing. In the optimal EDP, all consumers regret the purchase from the perspective
of the neutral frame. A right to return even for in-store sales would o�er them additional protection.

4.6 Discussion

Random Contracts The principal can do strictly better by randomizing within the canonical mech-
anism and thereby implementing a random contract. Randomization allows the principal to smooth
out the concealment of types. To see this, consider a situation with three types where it is optimal
to conceal only the intermediate type and the Pl -constraint is binding in his contract. Then, the IC
constraint from the highest to the intermediate type is slack at the root, as the intermediate type is
concealed and the highest type obtains a strictly positive rent (from the IC to the lowest type). Consider
a modi�cation of the mechanism where the intermediate type is concealed with probability 1 − ϵ and
revealed otherwise, obtaining the contract that is optimal ignoring the IC constraint of the highest type.
The uncertainty resolves after the agent makes his decision at the root, but before the frame-change to l .
In this mechanism, the highest type still strictly prefers not to imitate the intermediate type at the root
if ϵ is su�ciently small. Furthermore, ex-ante pro�t is strictly greater as the “revealed” contract for the
intermediate type is more pro�table than concealing it. Allowing for random contracts, however, the
problem loses tractability because local IC constraints are in general no longer su�cient.

Commitment to Side Payments In the main section, we assume that the consumer can end the
interaction with the principal at every step. Suppose instead that the principal can charge an “entry fee”
for a continuation problem. For example, in order to pre-order a certain make of a car, the consumer
needs to make a deposit, which is forfeit if the consumer does not follow through. Formally, the principal
designs an EDP where every non-terminal node is labeled with a payment in addition to a frame. With
sophisticated consumers, the principal can implement the e�cient outcome and extract all surplus in
the highest frame: All types are concealed and are charged vθh (q̂θh ) −vθl (q̂θh ) to enter their respective
continuation problem. This charge does not interact with the decoy construction and ensures that the
concealed type doesn’t opt out in the low frame, as part of the price is already sunk at that stage.

The problem for naive consumers is not well de�ned. This is because side payments allow to
construct a money pump in an EDP with alternating high and low frames as follows. In the high frame,
the consumer can either opt out and get an ϵ-value gift, or continue at small �xed charge. In the low
frame, the options are the decoy (attractive in the high, but not the low frame), opt out (without a gift),
and to continue. In the naive solution, the consumer always continues: in the high frame – expecting to
choose the decoy at the next stage; in the low frame – expecting to opt out with a gift in the next stage.
Then, as the length of the EDP grows, the principal can extract unbounded pro�ts.
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Principal Commitment Without commitment, the principal cannot take advantage of the power to
frame to circumvent incentive compatibility. Consider the case without any commitment for her and �x
an EDP and it’s solution. Suppose a decision node is reached by this solution and is terminal for all types
reaching it. The EDP is consistent with sequential rationality of the principal only if this node is set in
the highest frame and engages in optimal static screening given the set of types reaching it. But then,
the lowest type obtaining a strictly positive q in this menu (which always exists) obtains no rent and his
contract violates the participation constraint in all lower frames. This is possible only if there are no
lower frames en-route to this decision node. But then, the EDP is equivalent to a menu set in the high
frame. The problem without principal commitment is therefore equivalent to the single-stage problem.

5 Conclusion

We analyze the e�ect of framing in a one-dimensional principal-agent model. The principal can frame
decisions in several ways, a�ecting the agent’s valuation as expressed by their choices. Such a setting
naturally leads to extensive-form decision problems. The principal uses framing not only to relax
individual rationality constraints, but mainly to induce dynamic inconsistency and thereby bypass
incentive compatibility constraints, despite strategic sophistication. Our main result is that—with
a large enough space of outcomes—any implementable contract can be implemented in a canonical
extensive-form decision problem with only three stages and two frames. Only some contracts are
available immediately, while others are available after the agent’s frame is lowered and raised again for
the �nal choice. At the latter two stages, the principal places decoy contracts, which remain unchosen
on-path but are designed to render deviations futile.

We apply our results to the classic monopolist screening problem. The optimal contract is imple-
mentable in canonical form, even if the principal cannot o�er a lower quantity than the outside option
(e.g. the outside option corresponds to not buying at all in this product category). This simple extensive
form allows the �rm to eliminate information rents at the cost of lower surplus and thereby achieve a
payo� that is strictly larger than full surplus extraction at all but the highest frame. Even if consumers
are protected by a shop-entry decision or right to return the product in an exogenously given neutral
frame, they are not protected against the full extraction of their information rents. We also characterize
the outcome with naive consumers. The structure of the optimal extensive form and the contracts of
sophisticated agents are robust to the presence of naive types. Naive types can be screened without
generating any additional information rents, even if the cognitive type itself is also unobserved.

Our analysis suggests several natural extensions. First, we consider a general but stylized model
for our application to outline the power of decision-framing design to extract surplus from consumers
and it’s potentially wide-ranging consequences for consumer protection policy. Applying our results in
a more detailed model to questions of behavioral industrial organization and regulation while taking
into account the limited nature of commitment, questions of competition, and a more realistic interior
degree of sophistication, which may very well be in�uenced by the usage of extensive form mechanisms,
as well as other features of real world sales interactions and mechanisms is a promising direction for
future research.

Second, we assumed that choice depends on exogenous factors of the presentation (i.e. the frame)
that are chosen by the principal, but satis�es the axioms of utility maximization given every frame. If
framing a�ects choice through focusing the attention of consumers on certain attributes, for example,
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we consider the case where these attributes are emphasized by the salesperson or the information
material and assume that the properties of the choice set are not relevant. Alternatively, one might
assume that the attention of the consumer is a�ected by the properties of the choice set (such as in the
models of focusing (Kőszegi and Szeidl, 2013) and salience (Bordalo et al., 2013)). With such “endogenous
framing”, a seller could in�uence decisions by including an option in the choice set that directs the focus
more towards quality. We expect that ideas similar to our construction can be applied to this setting.
There is an important caveat, however. While in our setting, the frames are �xed for every decision
node independently of the agent’s type, context e�ects depend on the choice set, which is generated
by backward induction and is hence type dependent. In e�ect, the frame can be made type dependent.
Consequently, screening with menu dependent preferences is a considerably richer setting and left for
future research.

Finally, we focus on the single-agent problem. The idea of using changes in framing to induce
dynamic inconsistency which is used to bypass incentive compatibility applies more broadly also to
mechanism design problems with multiple agents. To illustrate the possibilities, consider to following
simple example.

Example 4. Consider again the payo�s of Fig. 1a, but now there are two agents in a single-object
independent private values auction. It is easy to check that the maximal pro�t from using an auction with
a �xed frame is 4.5. Consider instead the following scheme: Every agent independently goes through a
mechanism analogous to Fig. 1b. We interpret arriving at c1 as reporting type θ 1 and analogously for c2.
The object is allocated to the highest reported type (with uniformly random tie-breaking), with a price
of θ 2

h = 6 for the high type and θ 1
l = 3 for the low type. If only one agent arrives at d2, he obtains the

object with probability 1 and pays 5.25. The outside option corresponds to opting out of the auction, if
both agents arrive at the decoy, we consider both to be opting out. It is easy to check that truth-telling
is an equilibrium of this mechanism. It yields a pro�t of 5.25, beating the best �xed-frame auction.31 N

Generally, it may bene�cial in multi-agent settings to use the information gained in the �rst stage in
order to determine the second stage for other agents, and so on, or even use more complex interdependent
schemes. Extending our analysis to a more general Bayesian mechanism-design setting is therefore left
for future research.
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A Proof Appendix

A.1 Preliminaries

Whenever types are enumerated by subscript i , we use notation uif B uθ if
. For each θ if , let <if and

(sometimes) <θ if denote the corresponding preference relation. For any EDP e , let C(e) denote the set of

all contracts available in e . Formally, for e = (A, f ) ∈ E1, C(e) B A and, recursively, for e = (E, f ) ∈ Ek ,
C(e) B ∪e ′∈EC(e ′).

First, note that our increasing marginal di�erences assumption on v implies that the consumer’s
preferences exhibit the single-crossing property.

Lemma 2 (Single-crossing property). For any two payo� types θ̄ ,θ ∈ R, such that θ̄ > θ , and contracts
x ,y ∈ C, such that qy > qx , we have

uθ (y) > uθ (x) =⇒ uθ̄ (y) > uθ̄ (x)

uθ̄ (y) 6 uθ̄ (x) =⇒ uθ (y) 6 uθ (x).

Proof. Take any x ,y ∈ C, such that qy > qx and uθ (y) > uθ (x). Note that the increasing di�erences
property ( ∂2v

∂θf ∂q
> 0) implies that

uθ̄ (y) − uθ̄ (x) = v(θ̄ ,y) −v(θ̄ ,x) + p
y − px

=

∫ y

x

∂vθ̄
∂q
(q) dq + py − px =

∫ y

x

(
∂vθ

∂q
(q) +

∫ θ̄

θ

∂2vθf

∂θf ∂q
(q) dθf

)
dq + py − px

> vθ (y) −vθ (x) + p
y − px = uθ (y) − uθ (x) > 0.

The proof of the second implication is analogous. �

Second, we prove the following result which ensures the existence of suitable decoy contracts.

Lemma 3. For any two payo� types θ < θ , the function ϕθ,θ B vθ −vθ : R→ R is twice di�erentiable,
strictly increasing, and bijective.

Proof. First, ϕθ,θ is twice di�erentiable since so are vθ and vθ . Second, by our assumption there exists

ϵ > 0 such that ∂2v
∂θf ∂q

> ϵ . Then ϕ ′
θ,θ

is positive and uniformly bounded away from zero

ϕ ′
θ,θ
(q) = v ′

θ
(q) −v ′θ (q) =

∫ θ

θ

∂2vθf (q)

∂θf ∂q
dθf > (θ − θ )ϵ > 0.

�

Corollary 2. For any two of prices p > p > 0 and payo� types θ > θ , there exists q such that uθ (p,q) =
uθ (p,q).

Proof. Because ϕθ,θ is invertible by Lemma 3, one can set q B ϕ−1
θ,θ
(p − p) so that it is as desired. �

Corollary 3. For any two payo� types θ > θ and any contract (p,q) ∈ R2, there exist unique contracts
(p,q), (p,q) ∈ R2, such that q 6 q 6 q and

(p,q) ∼θ (p,q) ∼θ 0 ∼θ (p,q) ∼θ (p,q).
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Proof. Because ϕθ,θ is invertible by Lemma 3, one can set

q B ϕ−1
θ,θ

(
uθ (p,q)

)
, p B vθ (q),

q B ϕ−1
θ,θ

(
uθ (p,q)

)
, p B vθ (q).

It is then straightforward to verify that (p,q) and (p,q) are as desired. �

Lemma 4. The e�cient quality for payo� type θf de�ned as q̂θf B argmaxq>0vθf (q) − κ(q) exists, is
unique and increasing in θf .

Proof. For any payo� type θf ∈ R, de�ne the corresponding surplus function ζθf : R+ → R as

ζθf (q) B vθf (q) − κ(q) (12)

and note our assumptions on v and κ imply that ζ is continuous, twice di�erentiable, initially strictly
increasing (ζ ′θf (0) > 0), eventually strictly decreasing (limq→∞ ζ

′
θf
(q) < 0), strictly concave, and has

increasing marginal di�erences (∂2ζθf (q)/∂θf ∂q > 0). Therefore, the e�cient quantity as de�ned in
(9) is well-de�ned, is the unique maximizer of the surplus, and is strictly increasing in θf by standard
monotone comparative statics arguments (see e.g. Edlin and Shannon, 1998). �

A.2 Proofs

Proof of Observation 1 on page 10: As a 1-EDP uses only a single frame, (i) implies (ii). By backward
induction, an EDP using only a single frame is equivalent to a menu in the same frame comprising of all
options o�ered somewhere in the EDP. Therefore, a c implemented by such an EDP needs to satisfy the
ICf

θθ ′ and Pfθ constraints and (ii) implies (iii). If c satis�es these constraints, the 1-EDP ({cθ }θ ∈Θ ∪ {0}, f )
implements c, whence (iii) implies (i). �

We prove the two constitutive propositions before proceeding to the proof of Theorem 1.

Proof of Proposition 1 on page 13: The necessity of the constraints for a given set of frames fR , { fθ }θ ∈ΘC
is derived in the main text. In particular, we saw that the incentive compatibility constraints are
determined by the frames used on the path to the contract of the imitated type, not the imitating type
and frames used on the path to cθ ′ cannot eliminate the IC constraints from θ ′ to θ for any θ ′,θ ∈ Θ.

To prove the proposition, it remains to show that we can assume that fR = h and fθ = l . Suppose
towards a contradiction that there exists a nonnegative c that is implementable by an EDP but does
not satisfy the constraints of the proposition, and �x an fR , ΘC , and { fθ }θ ∈ΘC such that the associated
constraints are satis�ed, which must exist.

First, suppose fR , h. But then c satis�es the constraints of the proposition with Θ′C = Θ. As
all contracts satisfy the participation constraint in fR < h and qθ > 0 for all θ ∈ Θ, they satisfy the
participation constraint in l by single crossing. As there are no incentive compatibility constraints with
Θ′C = Θ, all constraints associated to this set of hidden types are satis�ed.

Second, suppose instead that fR = h but for some type θ ′ ∈ ΘC we have fθ ′ , l . But then the
participation constraint for fθ ′ = l is satis�ed by single-crossing since qθ > 0. Hence the set of contracts
is feasible with fR = h and fθ = l for the same ΘC . �

Before we proceed, we prove two more detailed decoy construction lemmas, one for upward and an
analogous one for downward deviations.
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Lemma 5. For any increasing type pro�le (θ i )ni=0 and a nonnegative contract d0 = (p0,q0), there exists a
vector of decoy contracts d = (di )ni=1 = (pi ,qi )

n
i=1, such that

(i) quantities are increasing: for i ∈ {1, . . . ,n}, qi > qi−1;
(ii) all decoys are IC in frame h: for i, j ∈ {0, . . . ,n}, di <hi dj ;
(iii) decoy contracts are undesirable in frame l : for i ∈ {1, . . . ,n}, 0 <li di .

Proof. The decoy contracts are constructed iteratively. For i ∈ {1, . . . ,n}, obtain (pi ,qi ) B (p,q) from
Corollary 3 for (p,q) B (pi−1,qi−1),θ B θ il ,θ B θ ih . Now note that (i) and (iii) follow immediately from
Corollary 3, (ii) follows from Corollary 3 and the single crossing property (Lemma 2). �

Lemma 6. For any increasing type pro�le (θ i )n+1
i=1 and a nonnegative contract dn+1 = (pn+1,qn+1) <θn+1

l
0,

either dn+1 4
l
i 0 for all i ∈ {1, . . . ,n}, or there exists a vector of decoy contracts d = (di )ni=1 = (pi ,qi )

n
i=1,

such that
(i) quantities are increasing: for i ∈ {1, . . . ,n}, qi > qi−1;
(ii) all contracts are IC in frame l : for i, j ∈ {0, . . . ,n}, di <li dj ;
(iii) decoy contracts are undesirable in frame h: for i ∈ {1, . . . ,n}, 0 <hi di .

Proof. The decoy contracts are constructed iteratively. For i ∈ {1, . . . ,n}, obtain (pi ,qi ) B (p,q) from
Corollary 3 for θ B θ il ,θ B θ ih , and

(p,q) B


(pi+1,qi+1), (pi+1,qi+1) <

l
i 0,

0, (pi+1,qi+1) ≺
l
i 0.

Now note that (i) and (iii) follow immediately from Corollary 3, (ii) follows from Corollary 3 and the
single crossing property (Lemma 2). �

Proof of Lemma 1 on page 13: A continuation problem for type θ ∈ Θ with a nonnegative contract cθ
satisfying all three properties is given by eθ = ({0, ({0, cθ } ∪ {dθ ′}θ ′>θ ,h)},∪{dθ ′}θ ′<θ ,h)}, l), where
the contracts (dθ ′)θ ′>θ are constructed as d in Lemma 5 for the contract d0 = cθ , and type pro�le (θ ′)θ ′>θ
and the contracts (dθ ′)θ ′<θ are constructed as d in Lemma 6 for the contract dn+1 = cθ and type pro�le
(θ ′)θ ′6θ .

By construction, type θ chooses cθ from the terminal problem and since cθ satis�es the participation
constraint in the low frame, cθ ∈ Σeθ (θ ). For higher types, the terminal decision problem resolves to the
menu {dθ ′, 0} and by construction the outside option is weakly preferred in the low frame. Consider a
type θ ′ < θ . In the terminal decision problem, we have d0 <θh di and qi > q0, hence by single crossing
d0 �θ ′h di , which establishes that a lower type never chooses any of the decoys at the terminal stage. By
construction, dθ ′ ∈ Σeθ (θ ′) and dθ ′ 4θ ′ 0 �

Proof of Proposition 2 on page 13: Suppose that a nonnegative c satis�es {Phθ }θ ∈ΘR , {Plθ }θ ∈ΘC , {ICh
θθ ′}θ ∈Θ,θ ′∈ΘR

for some partition {ΘC ,ΘR} of Θ. Then let eθ for each θ ∈ ΘC be constructed as in Lemma 1 and consider
a canonical EDP

e∗ =
(
{eθ }θ ∈ΘC ∪ {cθ }θ ∈ΘR ∪ {0},h

)
.

Notice that from Lemma 1 it follows for each θ ∈ ΘC that there exist a solution σθ of eθ , such that

σθ (θ ′) 4θh cθ ,∀θ ′ ∈ Θ,
σθ (θ ) = cθ .
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Now letσ be such thatσ (θ ) = cθ . To show thatσ is a solution of e∗, notice that constraints {ICh
θθ ′}θ ∈Θ,θ ′∈ΘR

and {Phθ }θ ∈ΘR imply that ∀θ ∈ Θ,

σ (θ ) = cθ ∈ argmax
{cθ ′ }θ ′∈ΘR

uθh .

Therefore, σ satis�es

σ (θ ) ∈ argmax
{σ θ ′ (θ )}eθ ∪{cθ ′ }θ ′∈ΘR

uθh ,

which means that it is a solution of e∗.
Finally, letQ denote the set of outcomes in all contracts available in e∗. Then, settingq B mini Q,q B

maxi Q ensures e∗ is well-de�ned for any set of outcomes Q ⊃ [q,q]. �

Proof of Theorem 1 on page 11: Fix any nonnegative contract c . Then, for any Q, (ii) always trivially
implies (i) and (i) implies (iii) by Proposition 1. Finally, by Proposition 2, (iii) implies (ii) for a su�ciently
large space of outcomes Q. �

Proof of Theorem 2 on page 19: First, let us establish that for any ΘC , a solution to the interior optimiza-
tion problem in (RP) exists. Since limq→∞v

′
θf
(q)−κ ′(q) < 0, the set of q that yield a nonnegative surplus

is compact and the surplus attainable for any type and frame is bounded. We can therefore restrict
the choice of contracts to those that have nonnegative total surplus and transfers that do not exceed
this bound: If the �rst condition is violated, the principal could increase pro�ts by instead o�ering the
outside option to all such types. If the second condition is violated, the participation constraint has to be
violated. As the restricted set of contracts is compact and the objective and constraints are continuous,
we have a solution.

Let ((cθ )θ ∈Θ,ΘC ) be a solution to the relaxed problem and e∗ a canonical EDP with decoys for all
θ ∈ ΘC constructed as in Lemma 5 but omitting decoys for lower types as constructed in Lemma 6. Note
that this EDP is feasible as all contracts and decoys have nonnegative quantities. We need to show that
e∗ implements (cθ )θ ∈Θ.

First, note that Σe is rectangular, i.e. if σ ,σ ′ ∈ Σe with σ (θ ) , σ ′(θ ) and σ (θ ′) , σ ′(θ ′), there exists
a σ ∗ ∈ Σe with σ ∗ = σ except σ ∗(θ ′) = σ ′(θ ′).

It follows from the IC constraints that there is no strictly pro�table deviation into contracts of revealed
types, i.e. Σe∗(θ )∩{cθ ′}θ ′∈ΘR\θ , ∅ implies that cθ ∈ Σe

∗

(θ ). From Lemma 1, it follows that type θ cannot
deviate downwards into concealed types and that no decoys are chosen, i.e. Σe∗(θ ) ⊂ {cθ ′}Θ\{θ ′<θ |θ ′∈ΘC }.
It remains to show that there are no strictly pro�table upwards deviations in e∗ to complete the proof,
establishing cθ ∈ Σ

e∗(θ ) for all (cθ )θ ∈Θ.
As the proof relies on properties of the solution to (RP), we start by simplifying the relaxed problem.

De�ne
β(θ ) B max {θ ′ ∈ ΘR |θ

′ < θ }

the closest revealed type below a given type θ , and

α(θ ) B min {θ ′ ∈ ΘR |θ
′ > θ }

the closest revealed type above a given type θ , with the notational convention that max ∅ = min ∅ = ∅.
We now de�ne the doubly relaxed problem, where we remove all but the downward IC constraints into
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the closest revealed type and the upwards IC constraints into the next largest revealed type.

max
ΘC ⊆Θ

max
{(pθ ,qθ )}θ ∈Θ

∑
θ ∈Θ

µθ (pθ − κ(qθ )) (DRP)

s.t. vθh (qθ ) − pθ > 0 ∀θ ∈ ΘR

vθl (qθ ) − pθ > 0 ∀θ ∈ ΘC

vθh (qθ ) − pθ > vθh (qβ (θ )) − pβ (θ ) ∀θ ∈ Θ
vθh (qθ ) − pθ > vθh (qα (θ )) − pα (θ ) ∀θ ∈ Θ

We have the following

Lemma 7. The solution to the doubly relaxed problem satis�es R-monotonicity

θ ,θ ′ ∈ ΘR , θ > θ
′ =⇒ qθ > qθ ′ (13)

and solves the relaxed problem.

Proof. Note that transitivity implies it is su�cient to establish R-monotonicity only for adjacent revealed
types. Take any θ ,θ ′ ∈ ΘR ,θ > θ

′ and θ = α(θ ′),θ ′ = β(θ ). Then, the IC constraints

vθh (qθ ) − pθ > vθh (qβ (θ )) − pβ (θ ) = vθ ′h (qθ
′) − pθ ′

vθ ′h (qθ
′) − pθ ′ > vθ ′h (qα (θ ′)) − pα (θ ′) = vθ

′
h
(qθ ) − pθ

imply

vθh (qθ ) −vθ ′h (qθ ) > vθh (qθ ) −vθ
′
h
(qθ ).

Finally, qθ > qθ ′ because the function q 7→ vθh (q) −vθ ′h (q) =
∫ θh
θ ′h

∂v(t,q)
∂t dt is increasing.

To show that the solution to (DRP) solves (RP), it su�ces to show that local IC imply global IC. Let
us proceed by induction on the number of types in ΘR between the source of the ICh

θθ ′ constraint θ
and it’s target θ ′. If there are no revealed types between, then θ ′ = β(θ ) (resp. α(θ )) and we are done.
Suppose that all constraints with up to n intermediate revealed types are implied and let θ ′ > θ , θ ′ ∈ ΘR

with n + 1 intermediate revealed types (the θ > θ ′ case is identical). Then

vθh (qθ ) − pθ > vθh (qβ (θ )) − pβ (θ )

=
(
vθh (qβ (θ )) −v(β(θ )h ,qβ (θ ))

)
+v(β(θ )h ,qβ (θ )) − pβ (θ )

>
(
vθh (qβ (θ )) −v(β(θ )h ,qβ (θ ))

)
+v(β(θ )h ,qθ ′) − pθ ′

>
(
vθh (qθ ′) −v(β(θ )h ,qθ ′)

)
+v(β(θ )h ,qθ ′) − pθ ′

= vθh (qθ ′) − pθ ′

where we used the local IC, the induction hypothesis and monotonicity. Hence all constraints of (RP)
are satis�ed by the solution to (DRP). M

Lemma 8. In the optimal contract of the relaxed problem the IC from any revealed type θ to the closest
lower revealed type β(θ ) is active.
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Proof. As the relaxed problem and the doubly relaxed problem are equivalent, it is su�cient to show that
local downward IC between revealed types are active in the doubly relaxed problem. Suppose towards a
contradiction that one of them is not active, say from type θ to β(θ ). Suppose we increase the price in
the contract of all revealed types greater than θ including θ by some ϵ > 0. Note that this change doesn’t
a�ect any constraints between the a�ected types. Furthermore, θ isn’t the lowest revealed type, hence
the participation constraint of all revealed type is implied by the IC and not active since IC-θ → β(θ ))

isn’t active. As we can pick epsilon su�ciently small, this IC is still slack and we strictly increased
revenue, contradiction the optimality of the initial contract. M

Lemma 9. In the optimal contract of the relaxed problem, qθ 6 q̂θh for all θ ∈ Θ.

Proof. As the relaxed problem and the doubly relaxed problem are equivalent, we can work on the
doubly relaxed problem. The result follows from Proposition 4 for concealed types. Suppose towards a
contradiction that this property is violated for some subset of revealed types. Pick the smallest revealed
type for which this is the case and denote it as θ . Note that qβ (θ ) 6 q̂β (θ )h < q̂θh < qθh and denote
the rent given to type θ as ∆ B v(θh ,qβ (θ )) − pβ (θ ). (This is the correct expression, because the local
downward IC is active by the above Lemma.) Consider the set of contracts where we replaced the
initial contract for type θ by

(
q̂θh ,vθh (q̂θh ) − ∆

)
. As θ receives the same utility in both contracts, no

participation constraint is violated and all IC from θ are still satis�ed. The upward IC β(θ ) → θ is still
satis�ed as it is implied by R-monotonicity (which is maintained) and the corresponding downward
IC. Consider any higher type imitating θ . The amended contract gives the same utility to θ at a lower
quality, hence it gives a strictly lower deviation payo� to higher types. In particular, all IC are satis�ed.
The revised contract is also more pro�table for the principal as the most pro�table way to transfer rent
to type θ in frame h is using quality q̂θh . Hence, the initial set of contracts wasn’t optimal. M

Now we can show that there are no pro�table feasible upward deviations in e∗. We proceed by
induction. Order the types such that {θ 1, . . . ,θn} = Θ, θ i < θ i+1. Clearly, the highest type has no
feasible upward deviations. Suppose all upward deviations are either infeasible or unpro�table for types
θ i into types θ j for j > i > m. We need to show that the required upward IC constraints out of type θm

are satis�ed. We will proceed case by case, in addition showing that the upward IC from concealed to
revealed types are always slack:

1. Deviations into a concealed type with rent ∆θ i 6 v(θ ih , q̂θ ih ) − v(θ
i
l , q̂θ ih

): Then the participation
constraint of type θ i is binding at the intermediate stage in frame l . But by single crossing

cθ i ∼θ il
0 =⇒ cθ i ≺θml 0, (14)

an imitation is infeasible.
2. Deviations into a concealed type with rent ∆θ i > v(θ ih , q̂θ ih

) − v(θ il , q̂θ ih
): Note that in this case

qθ i = q̂θ ih
and this rent has to be the result of a possible deviation that is discouraged by a

constraint of the problem and hence by the induction hypothesis this is a downward deviation
into a revealed type. Hence ∆θ i = v(θ

i
h ,qη) − pη for some η < θ i , η ∈ ΘR . But then the upward

deviation isn’t pro�table unless the deviation into η is pro�table, since qη 6 q̂ηh < q̂θ ih
= qθ i and

by single crossing

cη ∼θ ih
cθ i =⇒ cη �θmh cθ i (15)
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so all we have to show is that deviations into revealed types are not pro�table. If η < θm , this is
achieved already by the maintained IC constraints, if θm ∈ ΘR it is by the upward IC. The case we
need to consider are deviations from concealed types upwards into revealed types.

3. Deviations from a concealed into a revealed type: Consider a concealed type θm with a pro�table
upwards deviation into a revealed type. As the set of types is �nite, there has to exist a lowest
revealed type into which θm has a strictly pro�table deviation. Furthermore, since we impose
downward incentive compatibility constraints, this lowest target type has to be greater than θm .
We will show that such a lower bound cannot exist, hence there can be no pro�table upward
deviation.
Suppose such a lower bound exists, θ = min{θ ∈ ΘR |vθmh (qθ ) − pθ > vθ

m
h
(qθm ) − pθm }. But then,

consider type β(θ ). A deviation into this type is also strictly pro�table since cβ (θ ) ∼θh cθ and by
R-monotonicity qβ (θ ) 6 qθ , but then by single crossing cβ (θ ) <θmh cθ �θmh cθm , contradicting the
minimality of θ . If β(θ ) = ∅ an analogous argument establishes that the participation constraint is
violated. Hence there can be no strictly pro�table upward deviation.

And we established that there can be no upward deviation by type θm . By induction, no type prefers
any attainable contract o�ered to higher types in e∗ and hence we found an EDP that attains the upper
bound to the solution of (GP) and therefore (RP)=(GP). �

Proof of Proposition 3 on page 20: Let c = (cθ )θ = ((p∗θ ,qθ )
∗)θ be an optimal vector of contracts imple-

mented by some EDP. By Theorem 1, we can construct a canonical EDP e with that implements it. Let
ΘC and ΘR be the sets of revealed and concealed types in e . If θ ∈ ΘC , the statement follows from
Proposition 4. We proved that q∗θ < q̂θh as Lemma 9. Therefore there is only one case left to consider.
Assume that θ ∈ ΘR and towards a contradiction that q∗θ < qθ , where qθ satis�es ζθh (qθ ) = ζθl (q̂θl ),
where ζθ is the surplus function de�ned in (4). Denote the rent in this contract by ∆ B vθh (q

∗
θ ) − p

∗
θ .

We will construct a vector of contracts with strictly higher revenue. Starting from the canonical
EDP, we now conceal type θ and set the contract (q̂θl , p̂θl − ∆). Note that since q∗θ < qθ , we have
ζθh (qθ ) < ζθl (q̂θl ) and consequently

ζθh (qθ ) − ∆ < ζθl (q̂θl ) − ∆

pθ − κ(qθ ) < p̂θl − ∆ − κ(q̂θl )

and the principal receives weakly higher pro�t in the modi�ed contract.
Clearly, this contract satis�es the participation constraint in frame l and delivers rent greater than ∆

to type θ in the high frame, hence there is no deviation by this type. There is no downward deviation
into this contract since the type is concealed. Furthermore, we don’t have to worry about upward
deviations. The optimal concealed contract – which delivers even higher pro�ts – is never subject to
them and we have established that even a sub-optimal concealed contract delivers an improvement in
pro�ts. Hence the original vector was not optimal, a contradiction. �

Proof of Proposition 4 on page 20: Note that there are no IC constraints into a type θ ∈ ΘC . Hence we
can separate the principals problem and solve for the optimal contract of θ in (RP). The contract given
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to type θ solves

max
(p,q)

p − κ(q)

s.t. vθl (q) − p > 0

vθh (q) − p > ∆

Dropping the second constraint, the optimal contract is ĉθl , which delivers rentvθh (q̂θl )−vθl (q̂θl ), hence
the second constraint is satis�ed if

∆ 6
[
vθh (q̂θl ) −vθl (q̂θl )

]
. (16)

Similarly, note that the optimal contract dropping the �rst constraint is
(
vθh (q̂θh ) − ∆, q̂θh

)
, which

gives utility vθl (q̂θh ) −vθh (q̂θh ) + ∆ in the low frame. Hence the �rst constraint is satis�ed if

∆ > vθh (q̂θh ) −vθl (q̂θh ). (17)

In the intermediate case, both constraints are binding,

vθl (q
∗) = p

vθh (q
∗) −vθl (q

∗) = ∆

and the optimal contract is
(
vθl (q

∗),q∗
)
. Note that q∗ ∈ (q̂θl , q̂θh ) by single crossing. �

Proof of Proposition 5 on page 21: Take any type θ ∈ Θ. For each µ, consider (RP) with the constraint
θ ∈ ΘC (θ ∈ ΘR ) and denote the corresponding optimal value by ΠR

C,µ (ΠR
R,µ ). Next, using the surplus

function ζθf de�ned in (12), we can bound those values as

ΠR
R,µ > µθζθh (q̂θh ) (18)

ΠR
C,µ 6 µθζθl (q̂θl ) +

∑
θ ′,θ

µθ ′ζθ ′h (q̂θ
′
h
) 6 µθζθl (q̂θl ) + (1 − µθ )ζθ̃h (q̂θ̃h ), (19)

where θ̃ B max{Θ \ θ }.
Note that Lemma 4 implies that

ζθh (q̂θh ) > ζθh (q̂θl ) > ζθl (q̂θl ), (20)

and de�ne

µθ B
ζθ̃h (q̂θ̃h )

ζθh (q̂θh ) − ζθl (q̂θl ) + ζθ̃h (q̂θ̃h )
∈ (0, 1).

Finally, combining (18), (19) and (20) yields

ΠR
R,µ − Π

R
C,µ > µθζθh (q̂θh ) − µθζθl (q̂θl ) − (1 − µθ )ζθ̃h (q̂θ̃h )

= µθ

[
ζθh (q̂θh ) − ζθl (q̂θl ) + ζθ̃h (q̂θ̃h )

]
− ζθ̃h (q̂θ̃h )

> 0.

Therefore, for any µθ ∈ [µθ , 1], it is optimal to reveal θ .32 �

32This bound is typically not tight, as we introduced slack in (19).
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Proof of Proposition 6 on page 22: It is easy to see that the optimal contract and set of concealed types
before the change of valuations is still feasible after the change. Hence Π∗Θ 6 Π∗

Θ̃
. If θ̃ is concealed in the

optimum, we are done. Suppose that instead it is not concealed. Then, since θ̃l is the only di�erence to
the initial problem and doesn’t a�ect the constraints unless θ̃ is concealed, the optimal contract under Θ̃
is feasible under Θ and Π∗

Θ̃
6 Π∗Θ. Hence, the original vector of contracts is still optimal, establishing

the claim. �

Proof of Proposition 7 on page 22: Consider the pro�t from concealing all types except the highest,
ΠC (ϵ) B

∑
θ<θ µθvθl (q̂θl ) + µθvθh (q̂θh ), where we consider the θl as a function of ϵ . It is easy to see

that q̂θl → q̂θh as θl → θh . By continuity of v , ΠC (ϵ) → Π((̂cθh )θ ∈Θ).
Suppose that in the optimum θ < θ is revealed. Then qθ > qθ > 0 by Proposition 3 and pθ 6 vθh (qθ ).

But then, by the incentive compatibility constraint of θ , Π < Π((̂cθh )θ ∈Θ) − µθ (vθh (qθ ) − vθh (qθ )) <

Π((̂cθh )θ ∈Θ). Hence, there exists an ϵθ > 0 such that ΠC (ϵ) > Π for ϵ < ϵθ , so it cannot have been optimal
to reveal θ for su�ciently small ϵ . The result follows by taking the maximum over {ϵθ : θ ∈ Θ \ θ }. �

Proof of Theorem 3 on page 24: Let e0 denote an EDP constructed for sophisticated types in Theorem 1.
Order naive types ΘN = {θ

1, . . . ,θm} with θ i < θ i+1. We will construct an optimal EDP for the mixed
case inductively.

Starting from e0 = (E0,h), we add one continuation problem at the root for every naive type,

en+1 =

(
n+1⋃
i=0

Ei ,h

)
. (21)

To de�ne Ei , let the most preferred alternative in ei−1 for type θ i be xi B argmaxC(ei−1)
uθ ih

. During the
construction, we ensure that

1. no sophisticated type prefers to continue to Ei ,
2. no naive type θ j with j < i prefers to continue to Ei , and
3. type θ i indeed proceeds to Ei and chooses ĉθ ih eventually.

If we ensure this during our construction, all sophisticated types choose as in e0 and all naive types
choose their e�cient contract ĉθ ih and we establish the theorem.

Let Ei =
{({(
{Ni , {d

θ ′
N ,i }θ ′>θ i : θ ′∈ΘS , 0},h

)
,
(
{ĉθ ih
, {dθ

′

i }θ ′>θ i : θ ′∈ΘS , 0},h
)
, 0

}
, l
)}

.
We now have to specify Ni and the decoys and verify 1-3 above. First, use Corollary 3 to construct

Ni = (p,q) for (p,q) B xi ,θ B θ ih ,θ B θ il so that

Ni ∼θ ih
xi (22)

qNi > qxi (23)

Ni 4θ il
0 (24)

Second, let Θ>θ i
S (Θ>θ

i

S ) be a vector of types in ΘS that are (weakly) greater than θ i and de�ne the
decoys (dθ ′N ,i )θ ′∈Θ>θ i

S
as d from Lemma 5 for the contract d0 = Ni and type pro�le Θ>θ

i

S , and decoys

(dθ
′

i )θ ′∈Θ>θ i
S

as d from Lemma 5 for the contract d0 = ĉθ ih
and type pro�le Θ>θ

i

S .
By construction, every sophisticated type θ > θ i prefers the outside option to the contract chosen

from the continuation problems. Hence they have no incentive to enter. Furthermore, all contracts are,
by construction, worse in frame l than the outside option for all types θ < θ i , hence lower sophisticated
types have no incentive to enter. Hence, we established 1.
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By construction, Ei contains a most preferred option for θ ih , hence continuing into Ei is part of
a naive solution for θ i . At the subsequent decision node, the decision problem containing Ni is as
attractive as the outside option: By the construction of the decoys, Ni <θ Ih

dθ
′

N ,i and qNi 6 qdθ ′N ,i
and

hence Ni <θ il
dθ
′

N ,i . But Ni 4θ il
0. As the decision problem containing ĉθ ih

also contains the outside

option, continuing to this menu is part of a naive solution. From the menu
(
{ĉθ ih
, {dθ

′

i }θ ′>θ i : θ ′∈ΘS , 0},h
)
,

the DM chooses ĉθ ih by the construction of the decoys. This establishes 3.
To see 2, note that all decoys have higher quality than Ni and ĉθ ih , respectively, and are less preferred

according to θ ih . Hence, they are less preferred by lower naive types θ jh by single crossing. Furthermore,
ĉθ ih

is not attractive to lower naive types, as it is worse than the outside option. It remains to check
whether Ni is attractive. But note that Ni ∼θ ih

xi and qNi > qxi imply Ni 4θ jh
xi for all j < i . By the

induction hypothesis, Nj <θ jh
argmaxC(ei−1)

uθ jh
<θ jh

xi <θ jh
Ni . Consequently, Ni is not attractive to

lower naive types, and there is a naive solution where types θ j < θ i choose Ej .
Clearly, the contract implemented for naive types is optimal given the participation constraint

in the high frame any implemented contract needs to satisfy. Furthermore, suppose there is an EDP
implementing contracts for sophisticated types that are not implemented by an optimal EDP in Theorem 1.
Then the contracts don’t solve (RP), so we can �nd a strictly better set of contracts and use the above
construction. Hence every optimal EDP in (11) satis�es Theorem 3. From that, the decomposition
theorem is immediate. �

Proof of Observation 3 on page 24: Let us denote the contract for type θ in the sophisticated problem as
csθ and note that the contract in the naive problem is ĉθh . Note that csθ <θh 0 ∼ ĉθh and qsθ 6 q̂θh . Hence
by single crossing csθ <θf ĉθh , strictly for f , h if csθ , ĉθh . �

Proof of Observation 4 on page 26: To implement the vector of contracts (̂cθn )θ ∈Θ, the principal can
simply conceal all types using neutral frame n.

Notice that (̂cθn )θ ∈Θ satis�es all the constraints of (RP) forΘR = �,ΘC = Θ. Therefore, by Theorem 2,
there exists a canonical EDP e∗ that implements it. Notice that since the contract ĉθn for type θ satisfy
Pnθ , the interim and ex-post modi�cations e∗ and e∗ also implement (̂cθn )θ ∈Θ. �

Proof of Observation 5 on page 26: First, consider the ex-post modi�cation. Any naive solution needs to
satisfy ν (θ ) <θn 0. The revenue maximal vector of contracts satisfying these constraints is (̂cθn )θ ∈ΘN .
It is immediate from the proof of Theorem 3 that this set of contracts can be implemented using an
analogous construction.

Second, consider the interim modi�cation. Suppose that the optimal EDP without the modi�cation
is e∗ and notice that e∗ implements (̂cθh )θ ∈Θ. Now consider its interim modi�cation e∗. Since naive
consumers think they would get a better option than 0, they would proceed to e∗. Therefore, there exists
a naive solution ν to e∗, such that νθ = ĉθh for all θ . �

A.3 Construction of Example 2

It is apparent from Fig. 4 that the procedure sketched out in the text reduces this deviation surplus
to zero in the minimal number of steps.33 Formally, let dn = (pn ,qn) denote the sequence of decoy
contracts numbered from the last stage of the problem towards the root, which we start with d0 = cη .

33If cθ satis�es the participation constraint in the low frame, it is possible to save one stage by starting in the low frame.
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Let
q2n+1 B q, p2n+1 B p2n + θh (q − q2n)

for the decoys in odd periods, which are at the upper bound. The decoy in even periods satis�es

θlq2n − p2n = θlq − p2n−1

ηlq2n − p2n = ηlq0 − p0

Solving for these contracts, we get34

q2n =
θlq − p2n−1 − (ηlq0 − p0)

θl − ηl

p2n =
(q − q0)θlηl + p0θl − ηlp2n−1

θl − ηl

We can then substitute into the odd-index price, and obtain the geometric series.

p2n+1 =
(θh − ηl )p2n−1 − ηl (q − q0) (θh − θl ) + p0 (θh − θl )

θl − ηl

Writing an = p2n−1 we have a1 = p0 + θh (q − q0) and solving the recursion, we get

an = p0 + (q − q0)

(
ηl +

(
θh − ηl
θl − ηl

)n
(θl − ηl )

)
Recall that we have reduced the deviation surplus to zero when the price of the odd-index decoy (with
quality q) exceeds the low-frame willingness to pay θhq. We solve

θlq = p0 + (q − q0)

(
ηl +

(
θh − ηl
θl − ηl

)n
(θl − ηl )

)
n =

log
(

q
q−q0
+

q0ηl−p0
(q−q0)(θl−ηl )

)
log

(
1 + θh−θl

θl−ηl

) .

Let dne denote the next larger integer. The procedure needs 2 dne + 1 steps to implement the contract if
we have to start in the high frame, and 2 dne if we can start in the low frame. The comparative statics
mentioned in the text follow from straightforward computation.

34Clearly the q2n are decreasing. To guarantee that this quantity is always positive until we have reduced the surplus to
zero, we need to ensure that the worst case penultimate decoy has a positive quantity. This point solves

qθh − p = qθh − P

qηl − p = q0ηl − p0

qθl − P = 0

or equivalently q =
q(θh−θl )−(q0ηl−p0)

θh−ηl
. Hence, we do not have to worry about the lower bound in constructing our decoys

if q (θh − θl ) − (q0ηl − p0) > 0. Otherwise, the intersection with the indi�erence curve of ηl is replaced with the condition
q2n = 0 once the nonnegativity constraint is binding, The rest of the construction operates unchanged. We assume that the
condition is satis�ed in the above to simplify the exposition.
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